
C++ Object Persistency Using Object/Relational
Databases

Petr Čermák

March 25, 2009



Contents

1 Introduction 1

2 Persistence layer requirements 4
2.1 The identity of persistent objects . . . . . . . . . . . . . . . . . . 4
2.2 Database mapping requirements . . . . . . . . . . . . . . . . . . 5
2.3 Object-relational databases . . . . . . . . . . . . . . . . . . . . . 10
2.4 Database mapping requirements continued . . . . . . . . . . . . . 15
2.5 Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Library architecture . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Evolution of the IOPC 2 library 21
3.1 POLiTe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 The data access layer . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Metamodel and object-relational mapping. . . . . . . . . 23
3.1.4 Persistent object manipulation . . . . . . . . . . . . . . . 27
3.1.5 Querying . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 POLiTe 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Architecture of the POLiTe 2 library . . . . . . . . . . . . 32
3.2.2 The cache layer . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Persistent object manipulation . . . . . . . . . . . . . . . 35
3.2.4 Querying . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 IOPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Features of the library . . . . . . . . . . . . . . . . . . . 39

1



3.3.2 Architecture of the library . . . . . . . . . . . . . . . . . 40
3.3.3 IOPC SP . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 IOPC DBSC . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.5 IOPC LIB . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Library comparison . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Basic concepts of the IOPC 2 library 54
4.1 Library architecture . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Obtaining the metamodel description . . . . . . . . . . . . . . . . 56
4.3 Object relational mapping in the IOPC 2 library . . . . . . . . . . 60

4.3.1 Base classes . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Object mapping . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.3 Mapping algorithm prerequisites . . . . . . . . . . . . . . 66
4.3.4 The mapping algorithm . . . . . . . . . . . . . . . . . . . 70

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Literature used 77

2



List of Figures

1.1 IOPC 2 evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Example class hierarchy . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Vertical mapping tables . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Horizontal mapping tables . . . . . . . . . . . . . . . . . . . . . 8
2.4 Filtered mapping tables . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Combined mapping tables . . . . . . . . . . . . . . . . . . . . . 9
2.6 Proposed architecture of the O/R mapping library . . . . . . . . . 19

3.1 Architecture of the POLiTe library . . . . . . . . . . . . . . . . . 22
3.2 POLiTe persistent object states . . . . . . . . . . . . . . . . . . . 27
3.3 POLiTe references . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Architecture of the POLiTe 2 library . . . . . . . . . . . . . . . . 33
3.5 Caches in the POLiTe 2 library . . . . . . . . . . . . . . . . . . . 34
3.6 States of the POLiTe 2 objects . . . . . . . . . . . . . . . . . . . 37
3.7 Dereferencing DbPtr in POLiTe 2 . . . . . . . . . . . . . . . . . 38
3.8 The IOPC library workflow . . . . . . . . . . . . . . . . . . . . . 40
3.9 POLiTe library components used in IOPC LIB . . . . . . . . . . . 48
3.10 Structure of the IOPC LIB . . . . . . . . . . . . . . . . . . . . . 50

4.1 Reflection using the GCCXML . . . . . . . . . . . . . . . . . . . 57
4.2 IOPC 2 base classes . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 SQL schema generated from classes using combined mapping . . 69
4.4 Top-level part of the object-relational mapping algorithm . . . . . 70
4.5 Description of the Insert_Row method. Not used for object

mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Inserting objects using filtered mapping . . . . . . . . . . . . . . 72
4.7 Iterative loading algorithm . . . . . . . . . . . . . . . . . . . . . 74

3



Anotace

Anotace TODO: doplnit



Chapter 1

Introduction

Today, object-oriented languages represent standard instruments for business appli-
cation and information system development. These systems usually operate with
large amounts of persistent data stored in relational database management systems
(RDBMS). Data in RDBMSs are however represented differently from data in the
application layer. Developers need to do a lot of programming overhead to deal
with this so-called impedance mismatch every time they want to move data be-
tween relational databases and application-level object models.

Object-oriented database management systems (OODBMS) try to mitigate the
impedance mismatch for example by providing navigation using pointers instead
of using joins as in the relational databases. Despite their advantages the object-
oriented databases are not as widely used as the relational databases. Mostly be-
cause of the lack of various tools like reporting, or OLAP1 and due to the industry
standards pushed by the big players - Oracle, Microsoft and IBM. Moreover many
of RDBMS creators already addressed the impedance mismatch issue by incorpo-
rating object-oriented features into their products. Doing it a new kind of database
management system, object-relational database management systems (ORDBMS),
were created.

Another approach to bypassing the impedance mismatch is to isolate the devel-
oper from direct data manipulation in the database at application level. This goal
can be accomplished by using an object-relational (O/R) mapping layer. This layer
transparently maps relational data into application object model and vice versa.
The O/R tools usually offer additional services like object querying or caching.

Current information systems are often written in high-level languages like Java
or C#. There exist established O/R mapping tools for these environments. Well-

1see [2]

1



known is Hibernate2 for Java and nHibernate3 for C# or relatively new ADO.NET
Entity Framework from Microsoft4.

O/R mapping tools for such languages can use their feature called reflection.
Reflection allows program to find out information about its own data model and to
modify it at run-time. The O/R mapping layer then can easily inspect the structure
of the classes being mapped, and based on this information, it can transparently
load or save data from/to the underlying database. Languages that support reflec-
tion are often referred to as reflective languages.

Another frequently used language in this area is C++. Unfortunately, C++ is
not a reflective language, so the building of O/R mapping layer is a bit more dif-
ficult. The goal of this thesis is to develop such a mapping library, which should
work as transparently as possible. TODO: A good O/R mapping library can help
C++ application developers to focus on other areas than on complicated database
access and can move the C++ development towards the higher level reflective lan-
guages. To achieve this goal the library uses GCCXML, a XML output extension
to GCC. GCCXML helps the O/R layer to get a description of the class model used
in the program and to simulate the reflection. - do Abstraktu Another goal of this
thesis is to examine possibilities the ORDBMSs can provide to a O/R mapping
library.

One of goals of this thesis was to use advantages of three previous projects.
Their common predecessor is the POLiTe library5 was developed as a part of doc-
toral thesis [4]. Two follow-ups came after this work as master theses focusing on
different areas of the O/R mapping concept:

• Master thesis [1] (called POLiTe 2 in further text) addressed mainly the per-
formance and notably enhanced functionality of the object cache. It also
added multithreading support and made the interface of the library safer to
use.

• Mater thesis [3] (IOPC6) designed a new persistence layer. The main ad-
vantage of this new layer is transparent application development without the
need to additionally describe classes in it. It uses OpenC++ source-to-source
translator to analyze and prepare the source code for the object-relational
mapping. Even though brand-new interface was created, the library still sup-
ports classes written in the POLiTe-style.

2http://www.hibernate.org/
3http://www.nhibernate.org/
4http://msdn.microsoft.com/en-us/library/bb399572.aspx
5Persistent Object Library Test
6Implementation of Object Persistency in C++

2

http://www.hibernate.org/
http://www.nhibernate.org/
http://msdn.microsoft.com/en-us/library/bb399572.aspx


Figure 1.1: IOPC 2 evolution

The IOPC 2 library provided in this thesis not only merges the development
back into one product offering most of previously implemented features without
their drawbacks. Furthermore, the library implements new ideas like standalone re-
flection mechanism, additional mapping type using object-relational database abil-
ities and many other. TODO: It should represent a solid, flexible and extensible
platform for use and for future development. - do zaveru

In the following section we will introduce basic concepts of the object-relational
mapping, discuss new features of ORDBMSs and describe requirements and goals
of the IOPC 2 implementation. Then, in the third chapter, evolution of the IOPC/PO-
LiTe libraries will be presented in the context of requirements placed and their fea-
tures will be compared with each other. Chapter 4 describes basic concepts of the
IOPC 2 implementation whereas [?] contains detailed architectural information. In
conclusion we will evaluate the achievements of this thesis and will propose areas
for further development. Appendices contain a user guide TODO: and additional
overview tables .

Enclosed DVD contains library source code with examples, binary distribution
for Linux, documentation and in the first place a VMWare image with pre-installed
environment. The image contains Ubuntu Linux, freely distributable Oracle XE
database, latest GCCXML and all other IOPC 2 dependencies. The library source
code and source code of the examples is stored in the image as an Eclipse CDT
project. So all the examples can be modified, compiled and run right away.

TODO: Predelat citations - precislovat

3



Chapter 2

Persistence layer requirements

Sections in this chapter analyze the requirements that may be imposed on a O/R
mapping library and were taken into account during design and implementation
phase of the development.

2.1 The identity of persistent objects

In the world of object-oriented programming object identity represents an object
property that helps to distinguish objects from each other. Even if two distinct
objects have same values of all their attributes and so their inner state is identical,
they are still different instances with different identity. A reference to an object is
a closely related term to the identity as it uses this identity to describe the object it
is referring to.

If we consider entries in a relational table as objects, the identity of these ob-
jects could be based on any key in the table - usually the primary key. Persistence
layer would then use such a key as a description of object identity on the applica-
tion level.

In object-oriented systems, where database is used only as a mere storage of
the object model and/or the design focuses on the application-tier, an object iden-
tifier (OID) approach is used. OID is a name for a special table column and for
corresponding class attribute which has no business meaning. On the application
level it is usually hidden from users or application developers. OID contains an
identifier, usually a number, UUID1 or a list of numbers, which is unique for each
persistent object within the database scope. Object’s OID never changes during
its lifetime. OID is mapped into database tables as a surrogate key. Instances of
classes containing an OID attribute are called OID objects further in the text.

1A Universally Unique Identifier

4



Another approach is needed for systems built upon an existing database, for
systems where the use of natural, not surrogate, keys is required or for systems
with read-only or no-schema-changes-allowed databases. The object-relational
layer should be able to absorb identity of persistent objects from keys (even multi-
column keys) in existing schema. We will call such objects as database objects.

In several cases, we may want the object-relational layer to manipulate objects
without any identity. These objects may represent results of aggregation queries,
rows from non-updateable views or rows from tables without any keys. Transience
is an important feature of these objects: their modified state cannot be stored back
to the underlying database - origin of the data they contain may not even be trace-
able back to particular row and/or particular table.

The all-purpose O/R mapping layer should support OID objects as well as
database objects and even transient objects for query results.

2.2 Database mapping requirements

Persistence layer considered in the context of this thesis should be able to ma-
nipulate persistent instances of certain classes. These classes are called persistent
classes, its instances persistent objects. Storing objects to database implies that the
layer should store their attribute values to underlying database structures. Because
all predecessors of this thesis used relational database systems as their persistent
storage, let’s focus first on this area first.

Persistent classes would be represented as tables and their attributes as their
columns. Instances of persistent classes would be inserted into these tables as rows
containing instance attribute values associated with corresponding table columns.
Requirements on a basic persistence library could be:

• Ability to associate persistent classes with database tables

• Ability to map attributes of these classes on columns in associated tables.
This means that the layer should be able to store attributes of certain C++
types (basic numeric types, strings) into the database as column values.

Classes can also contain attributes of structured types or collections, which
are often mapped into separate tables or split into more columns in the rela-
tional model.

Last attribute type to be discussed is an association (C++ pointer/reference).
Association can be modelled using foreign key relationship between match-
ing tables. The persistence layer should be able to handle single associations
as well as collections of associations.

5



• An optional requirement may be an ability to generate required database
schema in form of a SQL create (or drop) script. The persistence layer may
require its own structures in the underlying database or it may be able to
operate upon existing database schema.

• Ability to query subsets of object model content. The layer should provide
a query language that would abstract from the physical representation of the
object model in the database.

Up to now we have considered only single classes without inheritance relations.
However, in C++ classes can form complex inheritance hierarchies and it is a natu-
ral requirement to be able to store descendants of persistent classes too. There are
several ways how to store these hierarchies into a relational database. To help to
illustrate these mapping types see the Figure 2.1 for example class hierarchy. This
hierarchy will also be used and modified further in the text.

Figure 2.1: Example class hierarchy

Vertical mapping is a most common (and natural) way of mapping attributes
of persistent classes in an inheritance hierarchy into tables in a relational database.
Each class in this hierarchy has one associated table in the database. Only values
from attributes declared in correspondent classes are stored into these tables. This
means that attributes declared in current class are mapped into its associated table,

6



attributes from parent class are mapped into a "parent" table etc. Storing one object
invokes a cascade of database inserts. Similar rules apply for updates, deletes and
selects. However, selects can be simplified using table joins and database views.
This solution offers good performance for shallow hierarchies, which is getting
worse with the inheritance graph getting deeper. It is a best choice for scenarios
where polymorphism does matter - by querying one table we easily get instances
of associated class and its descendants.

Let’s consider following instances of the classes from Figure 2.1:

Student(name: "Richard Doe", age: 22,
studcardid: "WCD-3223")

PhdStudent(name: "Joe Bloggs", age: 27,
studcardid: "PHD-1234", scholarship: 12000)

Employee(name: "Ola Nordmann", age: 45,
salary: 60000)

Person(name: "Mary Major", age: 60)

Vertical mapping will spread data from these instances into four tables as illus-
trated by the Figure 2.2. The tables are arranged so that attribute values belonging
to one particular class are displayed in the same row. To be able to join data from
the tables we use surrogate OID as explained in the previous chapter. All rows
belonging to one particular object are assigned the same OID.

Figure 2.2: Vertical mapping tables

Horizontal mapping offers better performance for scenarios where we don’t
need polymorphic queries - accessing descendants of specific class. Again, each
persistent class in a hierarchy has one associated table into which its instances
store their attributes. The difference from vertical mapping is that these tables
contain even attributes inherited from parent persistent classes. Rows in these ta-
bles contain enough information to load complete persistent class instances, thus

7



no cascade operations are needed. Every instance of horizontally mapped class is
mapped only into one table row in the database.

Figure 2.3: Horizontal mapping tables

As you can see in Figure 2.3 - queries using polymorphism can be very hard
to perform. Finding a specific object of Person type or its descendants involves
looking into all the tables. However, opposite to the vertical mapping, if we work
with objects of specific type (not including descendants), we don’t need any joins
in select statements or cascade inserts/updates.

Filtered mapping assigns only one database table to all persistent classes in
one inheritance hierarchy - see Figure 2.4. This table contains columns that rep-
resent all attributes from all classes in that hierarchy. Filtered mapping doesn’t
suffer from disadvantages of two previous approaches - it performs very well on
polymorphic data and doesn’t involve cascaded operations/joins. A disadvantage
of this approach is excessive storage requirement. Most of the rows in the table
will contain empty cells in columns that belong to attributes from classes not be-
ing in ancestor relationship of the matching class or from the matching class itself.
Second thing is that it is necessary to add a column telling us which class the rows
belong to. As we have all rows in one table there is no other easy way how to
distinguish the instance types.

8



Figure 2.4: Filtered mapping tables

Combined mapping is a combination of mappings mentioned above. It allows
users to use all kinds of mappings in one inheritance hierarchy. Combined map-
ping is the most sophisticated variation that allows users to specify these mappings
according to their needs. It is also quite complex for implementation, it has some
constraints how the mapping types can be used and it is not well maintainable on
the database side. Database structures created for combined mapping would re-
quire nontrivial constraints if their content were modified other way than using
the persistence layer that created the structures. The persistence layer should hide
this complexity beyond views to provide at least convenient read-only access. The
mapping algorithm used in the IOPC 2 library will be described later in Section
4.3.4. To see how the combined mapping can be used refer to Figure 2.5.

Figure 2.5: Combined mapping tables

9



The Employee class uses vertical mapping, the Student class uses horizon-
tal mapping and the PhdStudent class uses filtered mapping. Classes that use
filtered mapping can choose into which of their ancestors they will be mapped to.
Class PhdStudent is mapped to the table belonging to the Student class.

2.3 Object-relational databases

Object-relational databases offer higher level of abstraction over the problem do-
main. They extend relational databases with object-oriented features to minimise
the gap between relational and object representation of application data known as
the impedance mismatch problem. One of the features allows developers to cre-
ate new custom data types and extend them with custom functions. Main features
of the object-relational databases are summarised below. For detailed information
about user defined types and other features of object-relational databases refer to
[8], [9]. This area is introduced by an 1999 revision of the ISO/IEC 9075 family
of standards, often referred to as SQL3 or SQL: 1999. Because the level of imple-
mentation of the standard varies between available products, you may need to see
their manuals too. For Oracle 10g refer to [10].

User-defined types are custom data types which can be created by users using
the new features of object-relational database systems. These types are used in
table definitions the same way as built-in types like NUMBER or VARCHAR.
There are several kinds of UDTs - for example - distinct (derived) types, named
row types, and most importantly the abstract data types (ADT), which we will
focus on in the following paragraphs.

ADT is a structured user defined type defined by specifying a set of attributes
and operations much in a similar way to object-oriented languages like C++ or
Java. Attributes define the value of the type and operations its behaviour. ADTs
can be inherited from other abstract data types (in terms of object-oriented pro-
gramming) and can create type hierarchies. These hierarchies can reflect the struc-
ture of data objects defined in application-tier modules. Instances of ADTs are
called objects and can be persisted in database tables. See Example 2.3.1 for an
illustration how these types are defined and used in Oracle ORDBMS.

10



Example 2.3.1 Using object types in Oracle
-- type definitions
CREATE TYPE TPerson AS OBJECT (

name VARCHAR2(50),
age NUMBER(3)
) NOT FINAL;

CREATE TYPE TStudent UNDER TPerson(
studcardid VARCHAR2(20)

) NOT FINAL;
CREATE TYPE TPhdStudent UNDER TStudent(

scholarship NUMBER(10)
) NOT FINAL;
CREATE TYPE TEmployee UNDER TPerson(

salary NUMBER(10)
) NOT FINAL;

-- storage
CREATE TABLE Person OF TPerson;

-- fill it with data
INSERT INTO Person VALUES(

TPerson(’Mary Major’, 60)
);
INSERT INTO Person VALUES(

TStudent(’Richard Doe’, 22, ’WCD-3223’)
);
INSERT INTO Person VALUES(

TPhdStudent(’Joe Bloggs’, 27, ’PHD-1234’, 12000)
);
INSERT INTO Person VALUES(

TEmployee(’Ola Nordmann’, 45, 60000)
);

First, the supertype TPerson and its descendants TStudent, TPhdStud-
ent and TEmployee are defined. The NOT FINAL keyword allows us to create
subtypes of given types. Then physical storage table Person is created. This
table can hold not only instances of the TPerson type but also instances of its
descendants. Accessing these instances is demonstrated in the following Example
2.3.2.

11



Example 2.3.2 Accessing objects in Oracle
SELECT VALUE(x) FROM Person x;
-- returns:
TPERSON(’Mary Major’, 60)
TSTUDENT(’Richard Doe’, 22, ’WCD-3223’)
TPHDSTUDENT(’Joe Bloggs’, 27, ’PHD-1234’, 12000)
TEMPLOYEE(’Ola Nordmann’, 45, 60000)

-- accessing descendant attributes:
SELECT

TREAT(VALUE(x) AS TStudent).studcardid AS studcardid
FROM Person x
WHERE VALUE(x) IS OF (TStudent)
-- returns:
WCD-3223
PHD-1234

First, we list all objects stored in the Person table. Then we list all student
card IDs of all student objects that are stored in the table.

Nested tables. Nested tables violate the first normal form in a way that they
allow the standard relational tables to have non-atomic attributes. Attribute can be
represented by an atomic value or by a relation. Example 2.3.3 illustrates how to
create and use nested tables in Oracle database system. The example modifies the
Person type by adding a list of phone numbers to it. Interesting is the last step
in which we perform a SELECT on the nested table. To retrieve the content of
the nested table in a relational form, the nested table has to be unnested using the
TABLE expression. The unnested table is then joined with the row that contains
the nested table.

12



Example 2.3.3 Nested tables in Oracle
-- a type representing one phone number
CREATE TYPE TPhone AS OBJECT (

num VARCHAR2(20),
type CHAR(1)
);

-- a type representing a list of phone numbers
CREATE TYPE TPhones AS TABLE OF TPhone;

-- the modified TPerson type
CREATE TYPE TPerson AS OBJECT (

name VARCHAR2(50),
age NUMBER(3),
phones TPhones
) NOT FINAL;

-- storage
CREATE TABLE Person OF TPerson

NESTED TABLE phones STORE AS PhonesTable;

-- fill it with data
INSERT INTO PERSON VALUES(

TPerson(’Mary Major’, 60, TPhones(
TPhone(’123-456-789’, ’W’),
TPhone(’987-654-321’, ’H’)

) ) )

-- obtaining a list of phones of a particular person
SELECT y.num, y.type
FROM Person x, TABLE(x.phones) y
WHERE x.name = ’Mary Major’;

-- returns rows:
123-456-789 W
987-654-321 H

Please note, that the nested table PhonesTable in Example 2.3.3 may need
an index on an implicit hidden column nested_table_id to prevent full table
scans on it.

Collection types. SQL3 defines also other collection types like sets, lists or
multisets. In addition to nested tables, Oracle implements the VARRAY construct
which represents an ordered set (list). The main difference is that VARRAY col-

13



lection is stored as a raw value directly in the table or as a BLOB2, whereas nested
table values are stored in separate relational tables.

Reference types. We can think of the database references as of pointers in the
C/C++ languages. References model the associations among objects. They reduce
the need for foreign keys - users can navigate to associated objects through the
reference. In the following Example 2.3.4 we will add a new subtype TEmploy-
ee and modify the TStudent type from previous examples by adding a reference
to the student’s supervisor, which is an employee, to it. Note that we need to cast
the reference type REF(x) to REF TEmployee in the INSERT statement because
REF(x) refers to the base type TPerson.

2Binary large object

14



Example 2.3.4 References in Oracle
-- type definitions
CREATE TYPE TPerson AS OBJECT (

name VARCHAR2(50),
age NUMBER(3)
) NOT FINAL;

CREATE TYPE TEmployee UNDER TPerson(
salary NUMBER(10)

);
CREATE TYPE TStudent UNDER TPerson(

studcardid VARCHAR2(20),
supervisor REF TEmployee

);

-- storage
CREATE TABLE Person OF TPerson;

-- insert an employee into the Person table
INSERT INTO Person VALUES(TEmployee(’Ola Nordmann’, 45, ←↩

60000))
-- insert a student with a reference to his supervisor
INSERT INTO Person

SELECT TStudent(’Richard Doe’, 22, ’WCD-3223’,
TREAT(REF(x) AS REF TEmployee)))

FROM Person x
WHERE x.name = ’Ola Nordmann’;

-- select all students with their supervisors
-- dereferencing uses dot notation
SELECT x.name, TREAT(value(x) as TStudent).supervisor. ←↩

name
FROM Person x
WHERE VALUE(x) IS OF (TStudent)

-- returns a row:
Richard Doe, Ola Nordmann

2.4 Database mapping requirements continued

As we already know about the object-relational databases, These new features of
object-relational databases can be used to enhance functionality of described map-
ping types. They can also be a basis for a new mapping type that will entirely

15



depend on the use of ORDBMS. First, let’s have a look how the attribute mapping
can be improved:

• Collections (C++ containers) can be mapped into single columns as nested
tables or instances of one of the SQL3 collection data types.

• Structured attributes (C++ struct or class) can be mapped into single columns
as instances of SQL3 structured data types.

• Associations (C++ pointers or references) can be mapped as SQL3 refer-
ences.

Second, let’s solve mapping of classes and inheritance hierarchies. It is quite
obvious that user-defined types can be used for this task. Abstract data types can be
created for each class in the inheritance hierarchy by copying its inheritance graph.
Instances of the types can be then inserted into one table. The earlier presented
Example 2.3.1 displays structures that may be generated for classes from Figure
2.1 using such kind of database mapping.

This type of mapping is called object mapping in the IOPC 2 library. Its benefit
is that it moves most of the responsibilities of the persistence layer to the under-
lying database system. For example obtaining a list of fully-loaded instances of
specific type and its descendants involves several joins in the vertical mapping (fil-
tered mappings or other variations using the combined mapping). This must be
"planned" by the persistence layer. All such polymorphic queries are best per-
formed using the object mapping (see the Example 2.4.1), as all these tasks can be
accomplished only using the user-defined types and SQL3 queries or statements.

Example 2.4.1 A polymorphic query using object-relational features of the Oracle
database.
SELECT

name, age, TREAT(VALUE(x) AS TPhdStudent).studcardid AS ←↩
studcardid,

TREAT(VALUE(x) as TPhdStudent).scholarship as ←↩
scholarship

FROM Person x
WHERE VALUE(x) IS OF (TPhdStudent)

A serious problem for a persistence layer using this object mapping is that
there are major differences between database systems in the object-relational area.
For example DB2 doesn’t offer any type similar to the Oracle VARRAY data type.

16



Or another example - in DB2 you have to create whole table hierarchy for inher-
ited object types - much like as you would when creating storage structures for a
vertically-mapped data type. These issues imply that the persistence layer should
be flexible and modular enough to be able to support different database systems.

Another problem is multiple inheritance of ADTs. Although SQL3 standard
supports multiple inheritance, it is not implemented neither in the current version
of Oracle nor in the current version of DB2. The problem is discussed later in
Section 4.3.2

2.5 Querying

Object-relational systems allow users usually to load data in two ways. Either
by traversing the model of persistent objects through associations and letting the
persistence layer to load missing data into referenced local copies or by exploiting
the ability of the underlying DBMS to execute SQL queries against the data stored
in it. The persistence layer can provide direct access to the database by allowing
its users to run SQL queries on tables or views the layer generated. This approach
is not very user friendly as it requires the users to know the internals of database
mapping performed by the persistence layer. The layer should therefore offer its
own query language which will hide the complexity of the database structures.
Queries in such language can be passed as character strings or as objects which
represent attributes, values, comparison criteria etc. Depending on the level of
implementation, users may filter only objects of one inheritance hierarchy by their
attribute values, perform polymorphic queries returning objects of specified type
and its descendants or they may query associations between objects. This queries
represented in natural language would be:

• Find all students older than 26. (Age >=26)

• Find all students including Ph.D. students. (Actually all queries may be
modified to include Ph.D. students).

• Find all students which are supervised by Mrs. Ola Nordmann. (Using the
modified model from Example 2.3.4)

2.6 Caching

The role of caching is to speed up applications that use persistent objects by delay-
ing database mapping operations. This is generally achieved by taking ownership
of these objects when they are not currently in use by the user application. If the

17



user applications needs an already released object again, the caching facility3 looks
it up in its catalogue and if found, returns it to the user application, saving the time-
consuming database operations. The database operations for storing, updating or
loading persistent objects are controlled by the cache layer, not by the user applica-
tion. The layer is therefore responsible for creating and destroying persistent object
instances.

2.7 Reflection

Users of the persistence layer may want to examine the structure of persistent
classes at run-time. This is not of a big issue in reflective languages like Java
or C#, but in the C++, which is not reflective language, this requirement may pose
a problem. Yet not necessarily, because the persistence layer must know about the
structure of classes it is mapping to database. So, it only depends on the particular
implementation of a C++ O/R mapping library whether it provides access to this
information and how.

If the library puts these introspection features behind unified interface and al-
lows to inspect wider set of classes than only the persistent classes, it may provide
at least simpler alternative to reflection features offered by reflective languages.
This may be a big advantage, because developers tend to include O/R mapping
features into their application frameworks and O/R mapping is often one of the pil-
lars of infrastructural part of business applications. Therefore it reduces the need
for other reflection library.

2.8 Library architecture

Based on the discussion in previous sections, we are able to specify three relatively
autonomous areas a C++ persistence library should cover:

• Database access. The library should not be database dependent. To achieve
this goal, the database access must be virtualised by providing an interface to
other parts of the library which will hide the differences between databases
the users may use. The library should contain modules called database
drivers translating and dispatching requests from the interface to concrete
database instances. Database drivers should be separate modules allowing
users to select between them without the need to recompile the whole li-
brary. The architecture should be flexible enough to be able to handle rela-
tional as well as object-relational database systems. It would be also nice

3Cache. All related structures will be called as the cache layer.

18



if the whole database access infrastructure was a stand-alone module as the
discussed database interface could be used as a database access library.

• Reflection. If the reflection capabilities, as described in the previous sec-
tion, were provided as a stand-alone module, the library could be used in a
reflection library configuration.

• Object-relational mapping. The complete O/R mapping library would need
both, the database access and reflection configurations: The reflection to in-
spect the structure of the persistent classes and the database access interface
to load and store them from/to a database. The library should provide a
module which will manage and perform the O/R mapping including related
tasks as caching and querying. This O/R mapping module will depend on
the previous two modules.

Figure 2.6: Proposed architecture of the O/R mapping library

2.9 Conclusion

In this chapter, we analyzed basic aspects of an O/R mapping library implemen-
tation. Based on this analysis, we can summarise the requirements on the library.
Some of the requirements are required while some are optional. We list them for
further reference.

19



• Common O/R mapping requirements

– Ability to associate persistent classes with database tables

– Ability to map attributes of persistent classes to database columns or
attributes in instances of user-defined types

• Ability to use at least one type of O/R mapping (better all of them):

– Horizontal

– Vertical

– Filtered

– Object

– Combination of the mapping types

• Ability to persist references between objects

• Ability to persist collections of objects

• Ability to generate required database schema or ability to work with existing
non-mutable database schema

• Querying in the object model context.

• Object caching.

• Reflection

• Modular library architecture

20



Chapter 3

Evolution of the IOPC 2 library

The following paragraphs outline design and functionality of the IOPC 2 library
predecessors.

3.1 POLiTe

The common predecessor of IOPC, IOPC 2 and POLiTe 2 libraries - POLiTe repre-
sents a persistence layer for C++ applications. The library itself is written in C++.
Applications incorporate the library by including its header files and by linking its
object code. The library offers following features:

• Persistence of C++ objects derived from specific built-in base classes. Class
hierarchies are mapped vertically.

• Persistence of all simple numeric types and C strings (char*).

• Query language for querying persistent objects.

• Associations between persistent objects. Ability to combine more associa-
tions to manipulate indirectly associated instances.

• Simple database access.

• Common services like logging or locking.

3.1.1 Architecture

Even though the library can be divided to several functional units, it compiles as
one shared library. The architecture of the library is outlined in the Figure 3.1. The
main functional units are discussed in the following sections.

21



Figure 3.1: Architecture of the POLiTe library

3.1.2 The data access layer

The POLiTe library contains several classes that provide database access. At the
time, the library supported the Oracle 7 database and the code used OCI1 7 interface
to access it. The classes are accessed via common interface that can be used for
implementing other RDBMs to the library.

The interface consists of a set of abstract classes - Database, Connection
and Cursor. Communication with the database flows exclusively through this in-
terface and its implementation (OracleDatabase, OracleConnection and
OracleCursor). The interface Database provides a logical representation of

1Oracle Call Interface

22



a database (e.g. an Oracle instance), Database can create one or more connec-
tions (Connection) to the database. The Connection interface represents the
only communication channel with the database. Using the implementations of the
Connection interface it is possible to send SQL statements to database and re-
ceive responses in the form of cursors (Cursor). The response consists of a set of
one or more rows that can be iterated through the Cursor.

3.1.3 Metamodel and object-relational mapping.

Every persistent class maintainable by the POLiTe library has to be described by
a set of pre-processor macro calls. These calls are included directly into the class
definitions or near them. Description of the class attributes and the necessary map-
ping information has to be provided together with declaration of every persistent
class. Metainformation covers class name, associated database table, parents, every
persistent attribute with its type and corresponding table columns and more. For
complete list see [5]. Example 3.1.1 displays definition of our classes Person and
Student in the POLiTe library.

23



Example 3.1.1 Definition of a class in the POLiTe library
class Person : public PersistentObject {

// Declare the class, its direct predecessor(s) ...
CLASS(Person);
PARENTS("PersistentObject");
// ... and its associated table
FROM("PERSON");
// Define member attributes
dbString(name);
dbShort(age);
// Primary key OID is inherited from PersistentObject
// Map other attributes
MAP_BEGIN

mapString(name,"#THIS.NAME",50);
mapShort(age,"#THIS.AGE");

MAP_END;
};
// Define method returning pointer to the prototype
CLASS_PROTOTYPE(Person);
// Define the solitaire prototype instance Person_class
PROTOTYPE(Person);

class Student : public Person {
CLASS(Student);
PARENTS("Person");
FROM("STUDENT");
dbString(studcardid);
MAP_BEGIN

mapString(studcardid,"#THIS.STUDCARDID",20);
MAP_END;

};
CLASS_PROTOTYPE(Student);
PROTOTYPE(Student); // Student_class

class Employee : public Person {
CLASS(Employee);
PARENTS("Person");
FROM("EMPLOYEE");
dbInt(salary);
MAP_BEGIN

mapInt(salary,"#THIS.SALARY);
MAP_END;

};
CLASS_PROTOTYPE(Employee);
PROTOTYPE(Employee); // Employee_class

24



Because the library needs to track the dirty status of persistent objects, the pro-
grammer has to maintain this flag either by himself or better he should restrict ma-
nipulation with persistent attributes to the use of getter and setter methods defined
by the macros. For every class T described by these macros the library creates an
associated template class prototype Proto<T>. The solitaire instance of this pro-
totype class holds information about the metamodel described by the macros and
provides the actual database mapping. Prototypes are registered within the Clas-
sRegister. Using ClassRegister, the library and/or application can search
for prototypes by their names, and access methods needed for CRUD2 operations.

Persistent classes inherit their behaviour from one of four base classes defined
in the library - the Object, ImmutableObject, DatabaseObject or Pe-
rsistentObject class. Depending on what the parent is, several features of
the persistence are supported:

• Object - instances of descendants of this class can be obtained by database
queries. These objects don’t have any database identity and can represent
results from complex queries containing aggregate functions. More obtained
instances can thus be the same.

• ImmutableObject - instances of this class have a database identity mapped
to one or more column(s) in the associated table (or view) and represent con-
crete rows in database tables or views. They can be loaded repetitively, but
the ImmutableObject class descendants still don’t propagate changes
made to them back to the database. To use this class as a query result, the
query has to return rows that match rows in corresponding database tables or
views.

• The DatabaseObject class is much the same as the ImmutableObj-
ect, but changes are propagated back to the database.

• The PersistentObject class offers the most advanced persistence op-
tions. The PersistentObject defines and maintains a unique attribute
OID that holds the identity of every PersistentObject’s instance within
the database. Unlike previous classes, persistence of whole type hierarchies
is expected and supported.

As mentioned before, the library offers vertical mapping for descendants of
the PersistentObject. Tables related to mapped inheritance hierarchies are
joined using the surrogate OID key. If using DatabaseObject descendants, the
object model can be created upon an existing (and in case of ImmutableObject

2Create (insert) / Read (select) / Update / Delete

25



descendants even upon the read-only) database tables with arbitrary keys. In this
case, however, no inheritance between classes is allowed.

Associations in the POLiTe library are not modelled as references but as in-
stances of the Relation class. There are five subclasses of this class - On-
eToOneRelation, OneToManyRelation, ManyToOneRelation, Man-
yToManyRelation and ChainedRelation according to cardinality of the
association. Their names describe which kind of relation between the underlying
tables they manage. ChainedRelation is built from other relations and it can
be used to define relation for indirectly associated objects. Example 3.1.2 demon-
strates how a one-to-many relation between the Employee and Student classes
can be created and used.

Example 3.1.2 Associations in the POLiTe library
OneToManyRelation<Employee, Student> ←↩

Employee_Student_Supervisor(
"EMPLOYEE_STUDENT_SUPERVISOR", dbConnection

);

// Let’s suggest that the Employee variable represents
// a reference to a "Ola Nordmann" persistent object
// and Student represents a reference to a "Richard Doe"
// persistent object.
// Create a supervisor relation between "Ola Nordmann"
// and "Richard Doe".
Employee_Student_Supervisor.InsertCouple(

*Supervisor, *Student
);

The relation can be queried for objects on both of its sides. So we may run
queries like "Which students are supervised by Ola Nordmann?", "Who is the su-
pervisor of Richard Doe?" or even more complex ones, but that would be out of
the scope of this thesis.

The one-to-many relation can be replaced by a reference to s supervisor in the
Student class definition:

...
dbPtr(supervisor);
dbString(studcardid);
MAP_BEGIN
mapPtr(supervisor,"SUPERVISOR");
...

26



Usage of the references is closer to the object-oriented approach in which we
navigate using such pointers or references to gain access to the related objects. The
drawback is, that the navigation is usually one-way and in this case, the retrieval of
all supervised students of an employee is not trivial.

3.1.4 Persistent object manipulation

Persistent objects can enter one of the following states (see the state diagram in
Figure 3.2):

Figure 3.2: POLiTe persistent object states

• Transient - Each new instance of persistent class enters this state. The in-
stance data are stored only in the application memory and are not persisted.

• Local copy - A persistent image of the transient instance can be created by
calling the BePersistent()method. The method inserts attribute values
of the instance to the database. The memory instance can be deallocated
at any time as it is considered as a cached copy of the inserted database
data. This state can be entered also at a later time when loading a persistent
instance which has no local copy in the application memory.

• Locked local copy - To prevent the local copy deallocation, the local copy

27



can be locked in the application memory. Local copy is not deallocated until
its lock is released. After unlocking, the locked local copy enters the local
copy state.

• Persistent instance - A persistent object can enter this state if its local copy
is removed from the application memory. During the state transition, the
changes in the local copy are usually propagated to the database. The object
exists now only in the database; it can be loaded later and enter one of the
local copy states.

All local copies and local locked copies are managed by the ObjectBuffer
which acts as a trivial object cache. The buffer is implemented as an associative
container between object identities and local object copies. If the buffer is full, all
non-locked local copies are freed and dirty instances updated in the database.

Because persistent object can exist in one of those states, library uses indirect
references to access the object’s attributes. Users don’t have to know whether the
object is loaded into the object cache or if it exists only in the database. Users
can just access it via the Ref<T> reference type using the overloaded -> operator.
The library looks for the requested instance in the object cache and if not found, it
loads it from the database. C++ chains the operator -> calls until it gets to a type
that doesn’t overload the -> operator and there it accesses the requested attribute
or calls the requested function. So if the variable e is of the Ref<Employee>
type, the following expression:

e->salary(65000);

doesn’t invoke the setter method on the Ref<Employee> instance, but it looks
for the object in the object cache, loads it eventually, and invokes the setter method
on it. The process is illustrated by the Figure 3.3.

POLiTe allows the users to specify several concurrent data access strategies
the ObjectBuffer will use. These strategies are used to influence the safety or
speed of concurrent access and cached data coherence.

• Updating strategy - determines whether changes done to local copies are
propagated to the database immediately or they can be deferred.

• Locking strategy - determines how the rows in the database are locked when
they are loaded into local copies. Shared, exclusive or no locking can be
requested.

• Waiting strategy - if the application tries to access a locked database resource
(by another session), this strategy specifies whether the application waits
until the resource gets unlocked or an exception is thrown.

28



Figure 3.3: POLiTe references

• Reading strategy - determines behaviour of the persistence layer if a local
copy is accessed using the indirect reference. The local copy can be either
used right away or it can be refreshed with the data stored in the database.
The refresh option can be speeded up by comparing timestamps of the local
copy and of the stored image.

Object manipulation is illustrated by the Example 3.1.3. Two objects - an em-
ployee and a student, which is supervised by that employee, are created as transient
instances and inserted into the database. The BePersistent() call returns a
reference to the unlocked local copies of the created objects. Then the salary of the
employee is modified and the change propagated to the database. In the end, the
student object is deleted from the database and also from the memory.

29



Example 3.1.3 Persistent object manipulation
// Create a new employee
Employee* e = new Employee();
e->name("Ola Nordmann");
e->age(45);
e->salary(60000);
Ref<Employee> employee = e->BePersistent(dbConnection);

// Create a new student supervised by the employee ←↩
created

Student* s = new Student();
s->name("Richard Doe");
s->age(22);
s->studcardid("WCD-3223");
s->supervisor(empl);
Ref<Student> student = s->BePersistent(dbConnection);

// Update the employee’s salary
e->salary(65000);
e->Update(); // Propagates the change to the database
// The change could be propagated immediately if the
// updating strategy was set to the "immediate" setting.

// Delete the new student
s->Delete();
);

3.1.5 Querying

Queries in the POLiTe library search for objects of a specified class. Search criteria
restricting the result set can be specified. Queries are represented as instances of
the Query class which contains only two data fields: The search criteria, in fact
the WHERE clause of the final SELECT statement together with the ORDER BY
clause specification, determines what object will be returned and how the result
will be ordered. The search criteria can be written using SQL (referencing physical
table and column names) or using a C++-like syntax. The C++-like syntax hides
the O/R mapping complexity and allows the users to use more convenient class and
attribute names. The query objects can be then combined using the C++ !, && and
|| logical operators. Results of the query execution are accessed using instances of
the Result<T> template class. The template is used similarly to the Ref<T-
> template. Example 3.1.4 illustrates how the queries are created, combined and

30



executed.

Example 3.1.4 Queries in the POLiTe library
// All employees with salary > 40000
Query q1("Employee::salary > 40000")

// All employees with the first name Ola
Query q2("Person::name LIKE ’Ola %’);

// All employees with salary > 40000 having the first ←↩
name Ola

Query q3 = q1 && q2;

// Order the result by the salary descending.
q3.OrderBy("Employee::salary DESC");

// Execute q3 and iterate through the result
Result<Employee>* result = Employee_class(q3, ←↩

dbConnection);
while (++(*result)!=DBNULL) {

// members of the current object are accessible
// using (*result)->

};
result->Close();
delete result;

3.1.6 Conclusion

The library provides solid and rich-featured ORM solution. However, there are
several areas in which the library can be improved:

• Transparency - persistent classes have to be precisely described by macros.
Typos in this description may lead to unclear compile time or runtime errors.
Attributes must be accessed via the getter and setter methods.

• Library design - library is one monolithic block and compiles into one shared
library. There is no other way to add additional database drivers or features
than changing the makefile and recompiling the library. Same applies to
the library configuration - many parameters are configured as preprocessor
macros. Changing them implies library recompilation.

• Database dependency - without modifications, the library supports only the
Oracle platform. Adding new database support supposes to derive new de-

31



scendants of Database, Connection and Cursor classes, implement
their code and recompile the library. The library also contains several SQL
fragments that aren’t separated into the database driver layer.

These disadvantages are addressed mostly by the IOPC library [3] and its de-
scendant described further in this thesis. But first, we will look at the performance
enhancement provided by the succeeding library POLiTe 2.

3.2 POLiTe 2

New version of the POLiTe library focuses on the library’s performance and on the
design of new rich-featured cache layer. The cache layer replaces the ObjectB-
uffer interface and enhances the concept of indirect memory pointers by adding
one more indirection level.

3.2.1 Architecture of the POLiTe 2 library

Architecture of the library remained almost unchanged. It is still compiled into one
module and used the same way as the original POLiTe library was. Overview of
the architecture can be seen in the Figure 3.4

32



Figure 3.4: Architecture of the POLiTe 2 library

Database layer uses OCI 7 to connect to the Oracle 7 database. The layer has
been slightly modified to be able to notify the cache layer of several events like
Commit or Rollback.

On the contrary, both the object cache ObjectBuffer and the object ref-
erences have been completely replaced by the new cache layer and the related
infrastructure - database pointers. The differences are explained in the following
sections.

Because the new cache layer may use additional maintenance threads, most
parts of the library have been made thread-safe. Various synchronisation primitives
were added to the common services. The main architectural change is that all basic

33



database CRUD operations are routed through the cache layer which decides when
or how to perform them.

3.2.2 The cache layer

Figure 3.5: Caches in the POLiTe 2 library

The biggest part of the cache layer is certainly the cache implementations. Cache
implementations may derive from one of two interfaces depending on what features
they will provide (see the Figure 3.5):

• Cache - an interface providing basic synchronous caching functionality.

• ExtendedCache - extends the Cache interface with additional methods
that are needed for asynchronous maintenance of the cache using the cache
manager CacheKeeper (see later).

Concurrent data access strategies as introduced in the original POLiTe library
can be used with caches that implement the ExtendedCache interface.

Caches can be grouped together using the ComposedCache class with the
help of selectors. Selectors are classes whose instances determine which strategy
or which cache should be used based on the given object type, the object itself or
based on other criteria. The ComposedCache uses CacheSelector to decide
which cache should be used for the object being processed and then it passes a
StrategySelector to the selected cache as a parameter to each of its oper-
ations. Then the cache uses the StrategySelector to modify its behaviour
with selected strategies.

34



Caches that implement the extended interface can be maintained by the cache
manager called CacheKeeper3. CacheKeeper runs a second thread that scans
managed caches and removes instances considered as ’worst’. If dirty, these in-
stances are written back to the database. CacheKeeper acts also as a facade for
composing caches and specifying strategies.

Following cache implementations are provided with the POLiTe 2 library:

• VoidCache - implements the basic Cache interface. This implementation
actually doesn’t cache anything, but just holds locked local copies. As the
copies are unlocked, changes are propagated immediately to the database
and objects are removed from the cache.

• The LRUCache (multithreaded) and the LRUCacheST (single threaded)
implement the ExtendedCache interface. These classes use the LRU re-
placement strategy (see [6]). The multithreaded variant can even be used
with the CacheKeeper’s asynchronous maintenance feature.

• The ARCCache (multithreaded) and the ARCCacheST (single threaded)
use the ARC replacement strategy (see [7]).

3.2.3 Persistent object manipulation

The original POLiTe transient object are created using the standard C++ dynamic
allocation - using the new operator. After making these objects persistent, the
pointers to these objects are exchanged for indirect references represented by the
Ref<T> template. As the ownership of these objects is transferred to the object
cache, the pointers may be rendered invalid. In the POLiTe 2 library, the creation
and destruction of the objects is managed by the library code and users can access
its members by dereferencing indirect pointers.

The indirect pointer template Ref<T> was replaced by the template DbPtr-
<T>. Its instance may be referred to as a database pointer further in the text. D-
bPtr<T> is used similarly to the Ref<T> template. Example 3.2.1 demonstrates
the creation of a transient instance and its manipulation analogously to the Example
3.1.3.

3Caches that implement the basic Cache interface can be maintained too, but the CacheKee-
per doesn’t provide the asynchronous maintenance for them.

35



Example 3.2.1 Persistent object manipulation in the POLiTe 2 library
// Create a new employee
DbPtr<Employee> e;
e->name("Ola Nordmann");
e->age(45);
e->salary(60000);
e->BePersistent(dbConnection);

// Create a new student supervised by the employee ←↩
created

DbPtr<Student> s;
s->name("Richard Doe");
s->age(22);
s->studcardid("WCD-3223");
s->supervisor(empl);
s->BePersistent(dbConnection);

// Update the employee’s salary
e->salary(65000);
// There is no Update method as the cache updates the ←↩

persistent
// image automatically according to the Updating strategy ←↩

in use.

// Delete the new student
s->DbDelete();
);

The DbPtr<T> can point to instances in several states:

• Transient instances which are present only in memory (and do not have a
persistent representation yet), the owner of these instances is the pointer.

• In-memory instances owned by a cache (which may or may not have a
database representation. This represents in fact two states of the object).

• Persistent representation of the object. The pointer contains only the identity
of the object.

The last object state, the locked local copy, is implemented as an additional
level of indirection when dereferencing the database pointer. By dereferencing it
using the * operator, user receives an instance of a cache pointer (CachePtr<-
T>). The existence of the cache pointer guarantees that the object is loaded into

36



the memory and that the memory address of the object will not change until the in-
stance of the cache pointer is destroyed (unlocked). Such process locks the objects
in the cache so they can’t be removed unless they are unlocked. The transitions
between the object states are displayed in the Figure 3.6.

Figure 3.6: States of the POLiTe 2 objects

By using the * operator on a database pointer user receives a reference to a
loaded and locked instance in a cache. Constructor of the created cache pointer
asks cache to load relevant object from the database (if not already present in the
cache) and locks the object in the cache. The cache pointer can be dereferenced
again resulting in retrieval of direct pointer to the in-memory instance. This process
can be simplified just by using the -> operator on the database pointer. An implicit
instance of the cache pointer is created and the -> operator invoked on it. Then the
requested member of the instance is accessed. After that, the cache pointer instance
is destroyed and cache lock released. (This may result in significant performance
degradation if using the VoidCache, because only locked copies are contained by
the cache. Calling the -> operator causes a persistent object to be loaded from
database into the memory, then desired member is accessed and object - if modified
- is written back and removed from cache). The process is almost the same as if
dereferencing the Ref<T> references, the difference is the additional level - the
cache pointer.

37



If the variable e is of the DbPtr<Employee> type, the following expression:

e->salary(65000);

may trigger a sequence of actions as displayed in the Figure 3.7

Figure 3.7: Dereferencing DbPtr in POLiTe 2

3.2.4 Querying

The query language and query classes as described in Section 3.1.5 have not been
changed in the POLiTe 2 library. Only the query is now executed and its results
fetched in a slightly different way:

Example 3.2.2 Executing queries in the POLiTe 2 library
// All employees with salary > 40000
Query q("Employee::salary > 40000")

// Execute q and iterate through the result
Result<Employee> result(dbConnection, q);
while (++result) {

// members of the current object are accessible
// using result->

};
result->Close();

38



3.2.5 Conclusion

New version of the POLiTe library allows users to utilise advanced persistent ob-
ject caching features. Unmentioned remained the support for multithreaded envi-
ronment which includes encapsulation of several synchronisation primitives.

Disadvantages listed in the Section 3.1.6 also apply to this version of the library
as they were not the point addressed by the thesis [1].

3.3 IOPC

The IOPC library [3] contains a new API for object-relational mapping. This new
interface coexists with the old POLiTe-style interface inside one library. The in-
terface is (with few exceptions) clearly divided into two parts - the IOPC and the
POLiTe part. Classes written for the first version of the POLiTe library should be
usable with this library.

3.3.1 Features of the library

The IOPC library offers all features of the original POLiTe library. We will look
only at the new IOPC interface. New features and main differences are listed be-
low:

• No need to describe structure of persistent classes. Persistence works almost
transparently.

• All three basic types of class hierarchy mapping are supported - horizontal,
vertical and filtered. Combinations of these types in one class hierarchy are
also allowed (with a few exceptions).

• Database views that join data from all mapping tabes are generated. These
views are used for object loading and they also represent a simple read-only
interface for non-library users.

• Ability to define new persistent data types.

• Loading persistent object attributes by groups. Persistent attributes can be
divided into several groups which can be loaded separately.

• Easy implementation of new RDBMS into the library4.

4However, recompilation of several IOPC modules is still needed

39



3.3.2 Architecture of the library

The IOPC library consist of a number of modules, some of them are standalone ap-
plications. The hi-level architecture overview can be best explained on the library
workflow displayed in Figure 3.8.

Figure 3.8: The IOPC library workflow

Three main modules can be observed from the figure:

• IOPC SP uses OpenC++5 parser and source-to-source translator to modify
the source code to support the object persistence and generates XML meta-
data describing structure of persistent classes.

• IOPC DBSC generates SQL scripts from the XML metadata. The SQL
scripts create required database structured needed for the IOPC object-relational
mapping.

• IOPC LIB is a library that provides the object persistence services to a pro-
gram to which it is linked. It uses the metamodel generated by the IOPC SP
module and database structures created using the IPOC DBSC scripts.

• XML metadata loading and storing is performed by two statically-linked
libraries / classes - XMLMetadataLoader and XMLMetadataWriter.
Both classes use the Xerces6 parser to handle the XML files. Other type of
metamodel storage can be implemented by subclassing the MetadataLo-
ader and MetadataWriter interfaces.

5http://opencxx.sourceforge.net/
6http://xml.apache.org/xerces-c/

40

http://opencxx.sourceforge.net/
http://xml.apache.org/xerces-c/


3.3.3 IOPC SP

One of the most interesting aspects of the IOPC library is a new approach to meta-
model retrieval. User-created specification of the class structure is not needed. The
source classes are parsed and metadata is collected by the IOPC SP module.

IOPC SP is a standalone executable created from patched OpenC++ source
code and a IOPC metaclass IopcTranslator. The metaclass affects the source-
to-source translation of persistent classes done by the OpenC++ by performing the
following operations:

• Generates the set and get methods for all persistent attributes. Setters modify
the dirty status of the object and getters ensure that corresponding attribute
groups are loaded.

• Modifies every reference to their persistent attributes so that they use the
generated get and set methods.

• Generates additional members to the processed class needed by the IOPC
LIB.

• Inspects the processed class and writes information about its structure to a
XML file by calling the MetadataWriter (its implementation XMLMe-
tadataWriter).

In the end, IOPC SP runs compiler and linker on the translated source code.
As you can see in the Example 3.3.1, persistent classes in IOPC doesn’t need

any additional descriptive macros for the persistence layer to be able to understand
their structure. The only rules are that they need to be descendants of the I-
opcPersistentObject and that the attribute types need to be supported by
the IOPC. For example, IOPC doesn’t understand the std::string STL type,
only the basic C/C++ string representation char* (or its wide character variant)
is supported. If the string is allocated dynamically, it needs to be deallocated in the
desctructor.

41



Example 3.3.1 Definition of persistent classes in IOPC
class Person : public IopcPersistentObject {
public:

char* name;
short int age;
Person() {

name = NULL;
}
virtual ~Person() {

if (name != NULL) free(name);
}

};
class Employee : public Person {
public:

int salary;
};
class Student : public Person {
public:

char* studcardid;
Ref<Employee> supervisor;
Student() {

studcardid = NULL;
}
virtual ~Student() {

if (studcardid != NULL) free(studcardid);
}

};

Processed source code generated by the IOPC SP is deleted immediately after
compilation. It is not meant to be modified by developers. Following example
displays the processed Student class. It was stripped by the age attribute because
it was too long:

class Person : public IopcPersistentObject {
public:

Person() {
set_name ( __null ) ;

}
virtual ~Person() {

Free();
if ( m_name != __null ) free ( m_name ) ;

}
protected:

42



char * m_name;
bool m_name_isValid;

public:
virtual char * get_name()
{

if (!m_isPersistent || m_name_isValid || ! ←↩
m_classObject->isAttributePersistent(1)) return ←↩
m_name;

m_classObject->loadAttribute(1, this);
if (!m_name_isValid)

throw IopcExceptionUnexpected();
return m_name;

}
public:

virtual char * set_name(char * _name) {
m_name =_name;
m_name_isValid = true;
if (m_isPersistent) MarkAsDirty();
return _name;

}
protected:

void iopcInitObject(bool loadingFromDB) {
if (loadingFromDB) {

m_name_isValid = false;
}
else {

m_classObject = IopcClassObject::getClassObject( ←↩
ClassName(), true);

m_name_isValid = true;
}

}
virtual int iopcExportAttributes(IopcImportExportStruct ←↩

* data, int dataLen) {
if (dataLen != 1) return 1;
data[0].valid = m_age_isValid;
if (m_age_isValid) data[0].shortVal = m_age;
return 0;

}

virtual int iopcImportAttributes(IopcImportExportStruct ←↩

* data, int dataLen) {
if (dataLen != 1) return 1;
if (data[0].valid) {

if ((m_name_isValid) && (m_name)) free(m_name);
m_name = strdup(data[1].stringVal);

43



m_name_isValid = true;
}
return 0;

}
public:

static const char * ClassName() {return "Person";}
public:

static IopcPersistentObject * iopcCreateInstance() {
IopcPersistentObject * object = new Person;
object->iopcInitObject(true);
return object;

}
static RefBase * iopcCreateReference() {

return new Ref<Person>;
}

};
static IopcClassRegistrar<Person> ←↩

Person_IopcClassRegistrar("Person");

Rather larger amount of code was inserted into the class definition. IOPC SP
generated setter and getter methods for the attributes, serialisation and deseriali-
sation routines (iopcExportAttributes and iopcImportAttributes)
and other methods needed by the persistence layer.

Not only the class code was translated. Code that reads or sets attribute values
was changed to use the getter and setter methods (like we would use in the POLiTe
library):

// original:
Employee e;
e.age = 45;
// translated assignment expression:
e.set_age(45);

IOPC SP also generates a XML metadata file describing structure of the classes,
see Example 3.3.2.

44



Example 3.3.2 XML metadata file
<iopc_mapping project_name="example">
<class name="Employee">
<base_class>Person</base_class>
<mapping db_table="EMPLOYEE" type="inherited">
<group name="default_fetch_group" persistent="true">
<attribute db_column="SALARY" db_type="NUMBER(10)" ←↩

name="salary" type="int"/>
</group>
</mapping>

</class>
<class name="Person">
<mapping db_table="PERSON" type="vertical">
<group name="default_fetch_group" persistent="true">
<attribute db_column="AGE" db_type="NUMBER(10)" name ←↩

="age" type="short"/>
</group>
<group name="1st_persistent_group" persistent="true">
<attribute db_column="NAME" db_type="VARCHAR2(4000)" ←↩

name="name" type="char *"/>
</group>
</mapping>

</class>
<class name="Student">
<base_class>Person</base_class>
<mapping db_table="STUDENT" type="inherited">
<group name="default_fetch_group" persistent="true">
<attribute db_column="SUPERVISOR" db_type="NUMBER(10) ←↩

" name="supervisor" type="Ref&lt;Employee>"/>
</group>
<group name="1st_persistent_group" persistent="true">
<attribute db_column="STUDCARDID" db_type="VARCHAR2 ←↩

(4000)" name="studcardid" type="char *"/>
</group>
</mapping>

</class>
</iopc_mapping>;

As mentioned, persistent attributes can be divided into several groups which
are handled by IOPC separately. By default, two groups are generated - a defa-
ult_fetch_group containing all numeric attributes and a 1st_persiste-
nt_group containing attributes of all remaining data types (strings). The XML
metadata file can be customized by developers before running IOPC DBSC.

45



3.3.4 IOPC DBSC

IOPC DBSC is a standalone executable that generates SQL scripts for various pur-
poses - in particular the scripts to create or delete database structures required by
the object-relational mapping. It uses MetadataLoader to load the persistent
class metamodel written by the IOPC SP. SQL script created from the previously
generated XML metadata file Example 3.3.2 follows.

First it creates database table for the class list and fills it:

CREATE TABLE EXAMPLE_CIDS
(

CLASS_NAME VARCHAR2(64)
CONSTRAINT EXAMPLE_CIDS_PK PRIMARY KEY,

CID NUMBER(10) NOT NULL
CONSTRAINT EXAMPLE_CIDS_UN UNIQUE

);
INSERT INTO EXAMPLE_CIDS VALUES (’Employee’, 1);
INSERT INTO EXAMPLE_CIDS VALUES (’Person’, 2);
INSERT INTO EXAMPLE_CIDS VALUES (’Student’, 3);

Followed by a table (main table) containing OIDs of all persistent objects in
the project:

CREATE TABLE EXAMPLE_MT
(

OID NUMBER(10)
CONSTRAINT EXAMPLE_MT_PK PRIMARY KEY,

CID NUMBER(10)
CONSTRAINT EXAMPLE_MT_FK REFERENCES EXAMPLE_CIDS(CID)

);
CREATE INDEX EXAMPLE_MT_CID_INDEX ON EXAMPLE_MT(CID);

Then the mapping tables associated with persistent classes are created (we used
the default vertical mapping):

CREATE TABLE PERSON
(

OID NUMBER(10)
CONSTRAINT PERSON_PK PRIMARY KEY
CONSTRAINT PERSON_CD REFERENCES EXAMPLE_MT(OID) ON ←↩

DELETE CASCADE,
CID NUMBER(10)

CONSTRAINT PERSON_FK2 REFERENCES EXAMPLE_CIDS(CID),
AGE NUMBER(10),
NAME VARCHAR2(4000)

);

46



CREATE INDEX PERSON_CID_INDEX ON PERSON(CID);
CREATE TABLE EMPLOYEE
(

OID NUMBER(10)
CONSTRAINT EMPLOYEE_PK PRIMARY KEY
CONSTRAINT EMPLOYEE_CD REFERENCES EXAMPLE_MT(OID) ON ←↩

DELETE CASCADE,
SALARY NUMBER(10)

);
CREATE TABLE STUDENT
(

OID NUMBER(10)
CONSTRAINT STUDENT_PK PRIMARY KEY
CONSTRAINT STUDENT_CD REFERENCES EXAMPLE_MT(OID) ON ←↩

DELETE CASCADE,
STUDCARDID VARCHAR2(4000),
SUPERVISOR NUMBER(10)

);

Finally, two views are created for each persistent class. Simple views (SV suf-
fix) join all tables needed for loading complete instances of particular persistent
classes. Their columns correspond to attributes of the associated classes. Polymor-
phic views (PV suffix) have same structure as simple views: the difference is that
they return not only instances of the associated classes, but also instances of their
descendants.

CREATE VIEW Person_sv AS
SELECT OID, AGE, NAME
FROM PERSON
WHERE CID = 2;

CREATE VIEW Person_pv (CID, OID, AGE, NAME) AS
SELECT CID, OID, AGE, NAME
FROM PERSON
WHERE PERSON.CID IN (2, 1, 3);

CREATE VIEW Employee_sv (OID, AGE, NAME, SALARY) AS
SELECT EMPLOYEE.OID, AGE, NAME, SALARY
FROM PERSON, EMPLOYEE
WHERE EMPLOYEE.OID = PERSON.OID;

CREATE VIEW Employee_pv (CID, OID, AGE, NAME, SALARY) AS
SELECT 1, EMPLOYEE.OID, PERSON.AGE, PERSON.NAME, SALARY
FROM PERSON, EMPLOYEE
WHERE EMPLOYEE.OID = PERSON.OID;

47



CREATE VIEW Student_sv (OID, AGE, NAME, STUDCARDID, ←↩
SUPERVISOR) AS

SELECT STUDENT.OID, AGE, NAME, STUDCARDID, SUPERVISOR
FROM PERSON, STUDENT
WHERE STUDENT.OID = PERSON.OID;

CREATE VIEW Student_pv (CID, OID, AGE, NAME, STUDCARDID, ←↩
SUPERVISOR) AS

SELECT 3, STUDENT.OID, PERSON.AGE, PERSON.NAME, ←↩
STUDCARDID, SUPERVISOR

FROM PERSON, STUDENT
WHERE STUDENT.OID = PERSON.OID;

3.3.5 IOPC LIB

IOPC LIB is a shared library that represents the core of the IOPC project. It is
linked to the outputs (object files) of the IOPC SP and provides the run-time func-
tionality.

IOPC LIB is built on the POLiTe library, it uses some of its components and
exposes its new interface side-by-side with the original POLiTe interface. The
result is that the IOPC library can be used almost the same way as its predecessor.
It supports the POLiTe-style persistent objects as well as new persistent objects
inherited from the IopcPersistentObject class and processed with IOPC
SP. Components from the POLiTe library that IOPC LIB uses are displayed in
Figure 3.9.

Figure 3.9: POLiTe library components used in IOPC LIB

48



Because the object cache and the object references are reused from the orig-
inal, persistent object should enter same states using same state transitions as in
Section 3.1.4. There is, however, one problem with the current implementation in
that it doesn’t implement the locking correctly and all persistent objects look like
unlocked all the time. So the Locked Local Copy state can be entered only by
instances of the POLiTe persistent classes.

Querying, the query language and all related classes or templates are also
reused, so there is no change in this area either.

IOPC persistent objets can be associated exclusively using references as de-
scribed at the end of the Section 3.1.3. Relations described earlier in that section
can be used only for the POLiTe persistent objects. IOPC adds a new RefList<-
T> template to the standard POLiTe Ref<T> reference representing a persistable
list of references. The list is stored into a separate table (one per project) which un-
fortunately doesn’t have standard many-to-many join table schema. Each instance
of the RefList<T> is stored as a linked list of OIDs of its members. The table
completely unusable in SQL queries unless we are using its recursive features (if
available) or procedural constructs like cursor iteration. Second issue is that these
lists are always persistent. Every change is immediately propagated to the database
regardless of the state of its owner, object cache is also bypassed. This renders the
usage of RefList<T> in combination with transient objects quite dangerous as
orphaned entries are created in the "join" table. Same problem occurs if persistent
object with RefList<T> as a attribute is deleted - the associated linked list is not
removed from the database.

Figure 3.10 displays the structure of the IOPC library and the relationship be-
tween new IOPC- and the original POLiTe interface.

49



Figure 3.10: Structure of the IOPC LIB

Database layer uses slightly modified original interface. Along with the Dat-
abase, Connection and Cursor classes there is a new interface class - Dat-
abaseSqlStatements. It serves as an interface for database-dependent SQL
statement generation. IOPC contains Oracle 8i implementation of these interface
classes (using OCI 8).

IOPC persistent classes are created as descendants of the new base class - I-
opcPersistentObject. The original base class Object and its descendants
(ImmutableObject, DatabaseObject and PersistentObject) were
preserved and can be used by the POLiTe persistent objects. Note that IopcPe-
rsistentObject is derived from the original Object class allowing it to be
used with POLiTe components like object cache or references.

50



For each descendant of the IopcPersistentObject class there is one I-
opcClassObjectImpl instance. The purpose of this class is very similar to the
concept of prototypes described in the Section 3.1.3 - it contains all data needed
for object-relational mapping of the associated class. IopcClassObjectImpl
actually performs the mapping process. The class is linked to the POLiTe prototype
system using the IopcProtoBaseAdaptorwhich maps the prototype interface
on the IopcClassObjectImpl instance. Calls invoked on its ProtoBas-
e interface are delegated back to IopcClassObjectImpl. Public interface
to the IopcClassObjectImpl class is provided by the IopcClassObject
class.

As the name suggests, IopcClassObjectContainer is a place where
class object instances are stored. Its first responsibility is to load the class metadata
from the MetadataLoader and compare them with the class list stored in the
database. Then it creates and initializes the IopcClassObjectImpl instances.
Similarly to ClassRegister, it provides methods allowing us to find the class
objects by name or by class id.

3.3.6 Conclusion

The main goal of the IOPC library was to make the usage of the POLiTe library
simpler and more transparent. The architecture of the library was redesigned for
the sake of these requirements. At first glance, the IOPC library looks like a big
improvement over the original library, but if we look further into the source code
and used technologies, we come upon several critical issues that may cause the
usage and deployment of this library almost impossible.

IOPC uses the OpenC++ as a way to retrieve information about the structure
of persistent classes. The OpenC++ project seems to be almost dead, last commit
to the project’s CVS occurred in 2005. OpenC++ can’t handle most of template
constructs, processing files that include GCC STL headers (tested on versions 3.4
and newer) produces a lot of errors. Because the source-to-source translation is
used, users can’t be sure if any of their code translated with errors or warnings7

will do what was intended. For this reason the IOPC allows only the C strings
(char* and w_char*), not the C++ STL strings (std::string and std::-
wstring).

Next, IOPC uses its own modified version of OpenC++ (called 2.6.t.0) and
integrates it into the IOPC SP utility. This approach renders further maintenance
of the OpenC++ code difficult. New changes from the OpenC++ CVS have to be
merged manually into the IOPC SP source.

7Although the IOPC SP states that those errors can be ignored

51



Second point is a question, why there are two parallel interfaces in the IOPC
library - one for the new persistent objects and one for the POLiTe objects. If there
is no known implementation that uses the POLiTe library, there is no need to be
backward-compatible. The POLiTe part of the source code will just remain un-
maintained (as no one is supposed to use the POLiTe objects in new applications).
Because several IOPC objects inherit from the POLiTe classes, many inherited
methods doesn’t make sense any more. This makes the API less readable and can
lead to user’s confusion. An example of this situation is the IopcProtoBas-
eAdaptor which contains a number of methods commented as "Fake function".
Second example is the mentioned local copy locking problem. Are we supposed to
use the locking only on the POLiTe persistent objects or is it just a bug in the IOPC
implementation? The presence of two distinct APIs makes usage of the library less
clear and confusing.

The library itself remained as one monolithic block with only signs of library
configurability. Many parameters are defined as pre-processor macros, enabling
other options (like adding a new database driver) leads to changes in the source
code of the library and recompilation. The design of the library even makes impos-
sible to use more than one database driver at a time (the currently used implemen-
tation of the DatabaseSqlStatements is stored in a global variable).

Bad design of the program interface. Useful information are hidden in internal
structures of the library, these structures are not visible via the library’s API. This
concerns mostly the data retrieved from the MetadataLoader - the library could
implement some kind of reflection API to be able to query the metamodel.

The library cannot be used in multithreaded environment. There are shared
state-aware data structures that are reused between persistence layer calls. This
prevents to make the library multithreading-friendly without major modifications.

Despite good idea behind the IOPC library, the implementation is deeply flawed,
unusable and unmaintainable. For these reasons, the author of this thesis decided
not to continue development upon the source code of this library.

3.4 Library comparison

The following table provides side-by-side library comparison. The IOPC column
displays features of the IOPC part of the library interface only (not POLiTe).

POLiTe POLiTe 2 IOPC
Transparent
usage

- Macro
descriptions

- Macro
descriptions

+ Uses Open
C++

52



POLiTe POLiTe 2 IOPC

Supported
mapping types

- Vertical - Vertical

+ Vertical,
horizontal,
filtered,
combinations

Associations
between objects

+ Simple
reference and
relations -
one-to-many,
many-to-one,
many-to-many,
chained

+ Simple
reference and
relations -
one-to-many,
many-to-one,
many-to-many,
chained

+/- Simple
reference and
reference list

Caching
- Simple object
cache

+ Advanced
caching features.

-- Simple object
cache, no
locking

Querying
C++-like syntax,
combining
queries

C++-like syntax,
combining
queries

C++-like syntax,
combining
queries

Read-only
database /
existing schema
support

+ + -

Library
architecture

- Monolithic - Monolithic - Monolithic

Supported
databases

Oracle 7 (OCI 7) Oracle 7 (OCI 7)
Oracle 8i (OCI
8)

Multithreading
support

- + -

53



Chapter 4

Basic concepts of the IOPC 2
library

The IOPC 2 library is based on the ideas behind the IOPC library, its main goal
is to take the library where it should be and to add the best from the POLiTe and
POLiTe 2 libraries to it. Based on the discussion in the previous chapters IOPC 2
focuses on improvements in the following areas:

• Transparent usage - IOPC 2 retrieves description of persistent class meta-
model using similar mechanism as IOPC, no descriptive macros are needed.
OpenC++ has been replaced with GCCXML.

• Reflection - IOPC 2 gives application developers access to metamodel through
a simple reflection interface.

• O/R mapping - IOPC 2 offers all mapping types supported by the IOPC
library plus the object mapping as presented in Section 2.4. Persistent objects
in POLiTe libraries can be mapped on existing database schemas or read-
only databases. IOPC 2 has inherited this feature.

• Caching - the POLiTe 2 cache layer has been reused in the IOPC 2 library.
IOPC 2 supports all features added to the POLiTe library successor including
multithreading support.

• Library architecture - IOPC 2 library can be used in several configurations
depending on the developers’ needs. Database drivers have been separated
from the run-time library and now can be switched without the need of li-
brary source code modification.

54



In the following sections, we will discuss theoretical aspects of the IOPC 2
implementation - mostly the O/R mapping and transparency of the library usage.
Following [?] provides more detailed insight into the library architecture and us-
age.

4.1 Library architecture

As stated earlier, run-time part of the POLiTe, POLiTe 2 or the IOPC libraries is
one monolithic block. There is no way how to link to only a part of the library, it
may even be impossible because of the internal library design. One of the goals of
the IOPC 2 implementation was to make the run-time part configurable. For exam-
ple database drivers have become separate shared libraries. The addition of another
database driver does not result in the run-time library recompilation; drivers do not
need to be part of the library source code - they can be developed separately in
independent projects.

Configurability does not concern only the database drivers, but also other parts
of the library. The library can be used in the following configurations:

• Common services - a configuration that provides only basic services like
logging, tracing, thread synchronisation and several other utilities.

• Reflection library - a configuration that exposes an interface allowing appli-
cation developers to use the IOPC 2 reflection capabilities.

• Database access library - a configuration that provides basic database access
via loaded database drivers. It doesn’t offer any advanced features as object-
relational mapping or caching.

• Persistence library - a configuration that provides the full functionality of
the IOPC 2 library. Its features include object persistence, caching, direct
database access, reflection and all other features listed above.

The configurations are ordered by dependency, so the reflection library config-
uration includes features provided by common services and so on, database access
library configuration provides also features of the reflection library, and as stated
earlier, the persistence library configuration provides features of all other configu-
rations.

55



4.2 Obtaining the metamodel description

As it was explained in Section 3.1.3, the POLiTe and POLiTe 2 libraries depend
on pre-processor macro calls included in class definitions to obtain metamodel
description.

The IOPC library tries to avoid disadvantages of this approach mentioned in
Section 3.1.6. IOPC makes the process of metadata retrieval more user-friendly and
transparent by utilizing a modified version of the OpenC++ source-to-source trans-
lator. For more on this topic, see Section 3.3.3. The main point is that OpenC++
is incomplete and is not developed any more. This leaves users in a bad situation
as they can’t use STL data types (because the OpenC++ doesn’t handle templates
very well) or even they can’t be sure if their code was processed correctly.

However, the idea to employ an external tool to analyze and process the source
code is convenient, so IOPC 2 should use another tool to solve this situation. GC-
CXML1 was chosen to replace OpenC++.

GCCXML is a XML output extension to GCC. GCCXML uses GCC to parse
the input source code and then dumps all declarations into a XML file, which can
be easily parsed by other programs. The downside is that it processes only declara-
tions, therefore it can’t be used as a source-to-source translator. Yet GCCXML rep-
resents ideal out-of-the-box solution for discussed scenario. GCCXML can handle
the C++ language in its entirety and its usage doesn’t involve the risk of translated
source code misinterpretation.

IOPC 2 uses the generated XML file to gain knowledge of the structure of
classes in the processed source code. This information is then made accessible
via reflection interface provided with the library. User applications can then query
the metamodel and use it in a way similar to applications written in reflective lan-
guages. The reflection mechanism used in IOPC 2 is outlined in Figure 4.1.

1http://www.gccxml.org

56

http://opencxx.sourceforge.net/


Figure 4.1: Reflection using the GCCXML

Example 4.2.1 illustrates persistent class definition in IOPC 2. No special
macros are needed. However, it presents only a basic, least convenient variant
as more features are provided by using enhanced data types (see [?]) and by speci-
fying additional class metadata (see [?]).

57



Example 4.2.1 Basic persistent class definition in IOPC 2
class Person : public iopc::OidObject {
public:

short int age;
std::string name;

};
class Employee : public Person {
public:

int salary;
};
class Student : public Person {
public:

std::string studcardid;
DbPtr<Employee> supervisor;

};
class PhdStudent : public Student {
public:

short int scholarship;
};

The process performs the following steps:

1. First, the source file is processed by the GCCXML. GCCXML dumps all
declarations from the source file into an easy to parse XML file. An excerpt
from the XML file containing elements and attributes related to the processed
Person class is displayed in Example 4.2.2

2. The XML file is then processed by the IOPC SP2 utility (a part of the IOPC
2 project). IOPC SP produces compilable C++ file containing data structures
that describe classes declared in the source file and their attributes (type de-
scriptions). This file, respectively its compiled version, is called a metadata
library. For translated Person class see Example 4.2.3

3. In the last step, the original source files and created type libraries are com-
piled and linked together into a final application.

2Although its name matches the name of a IOPC module with similar functionality (see Section
3.3.3), this tool was written from scratch for the IOPC 2 library.

58



Example 4.2.2 GCCXML output
<!-- Class Person
IOPC SP searches for members which are of Field type.
(Other members may be methods, constructors, operators ←↩

and other -->
<Class id="_1319" name="Person" members="_2960 _2961 ←↩

_2962 _2963 _2964 _2965 " bases="_2649 ">
<Base type="_2649" access="public" virtual="0"/>

</Class>

<!-- fields related to the Person class -->
<Field id="_2960" name="age" type="_195" access="public" ←↩

/>
<Field id="_2961" name="name" type="_1608" access="public ←↩

"/>

<!-- field data types -->
<FundamentalType id="_195" name="short int"/>
<Typedef id="_1608" name="string" type="_1564"/>

Example 4.2.3 IOPC SP output
// Header file .ih
META_BLOCK1(::Person)
META_PARENT1(iopc::OidObject)
META_ATTR1(age, short int, Attribute::VISIBILITY_PUBLIC)
META_ATTR1(name, std::string, Attribute:: ←↩

VISIBILITY_PUBLIC)
META_BLOCK2(::Person)
META_ATTR2(::Person, age)
META_ATTR2(::Person, name)
META_BLOCK3(::Person, Person, )
META_BLOCK4

// Source file .ic
META_REGISTER_TYPE(::Person)

The process is flexible and customisable. Developers can integrate it with their
favourite IDEs or build systems. IOPC 2 project contains an example of seamless
IDE integration, see [?]. This way the build process is almost transparent and users
don’t need to take any additional steps to make the reflection work.

59



Information stored in the type libraries are accessible via reflection interface
provided by IOPC 2. It allows developers to query the class metamodel and to
execute reflective operations upon it. IOPC 2 library supports the following:

• Looking up a Type object by class name. The Type class (and its de-
scendants) has similar purpose to prototypes from the POLiTe library or to
IopcClassObjectImpl from the IOPC library. The difference is that it
doesn’t perform any database mapping, it just provides access to the meta-
model.

• Obtaining a list of classes.

• Traversing a class hierarchy.

• Obtaining list of attributes, obtaining a concrete attribute by looking it up by
its name, listing inherited attributes.

• Querying or setting attribute values at run-time.

• Creating object instances.

• Automatic dirty status tracking on an attribute or object level.

4.3 Object relational mapping in the IOPC 2 library

All mapping types offered by the IOPC library are also implemented in the IOPC
2 library - horizontal, vertical, filtered as well as combinations of them. IOPC 2
library provides as much freedom combining them within one inheritance hierarchy
as the IOPC library does. Additionally, object mapping is available for use with
object-relational databases. Developers can combine object mapping with the other
mapping types under certain restrictions.

IOPC 2 offers most of its functionality if using a generated schema with sur-
rogate keys (OID columns) and OID objects. Such schema contains additional
views, tables or types which support the mapping process. IOPC 2 also handles
existing schemas with no OID columns or additional database structures as well. It
is able to map data from read-only databases or from aggregated query results into
standard persistent objects.

Detailed aspects of the object-relational mapping implementation are discussed
in the following sections.

60



4.3.1 Base classes

Figure 4.2 displays base class hierarchy for persistent classes defined in IOPC 2.
Data classes in user applications should derive from one of these supertypes. Each
of these base classes provides different level of functionality for its descendants.

Figure 4.2: IOPC 2 base classes

The descendants of Object are capable of reflection. The reflection mech-
anism inspects descendants (direct or indirect) of this class only. Reflection is
database independent and can be used separately as a standalone part of the IOPC
2 library. This also implies that direct descendants cannot be persisted. Persistence
is provided for DatabaseObject and OidObject descendants.

Query results can be represented as instances of the DatabaseObject de-
scendants. The objects (and thus the query results) may or may not have an iden-
tity. Their identity of DatabaseObjects is specified by supplying a list of key
attributes. As described in Section 2.1, objects without identity can be used for
example to hold results of aggregation queries. DatabaseObjects with the key
attributes specified can be mapped into database tables. They even support vertical
and horizontal database mapping. However, the subclasses have to share the same
set of key attributes. This enables inheritance, but polymorphism is somewhat lim-
ited as IOPC 2 is not capable of recovering the effective type of an object from a
set of key attribute values. IOPC 2 doesn’t generate structures for classname res-
olution based on the key values, so when loading an object identified by its key
values, the type of the loaded object must be specified. That is also the reason why

61



filtered mapping is not supported for non-OID objects.

Example 4.3.1 DatabaseObject usage
class Person : public iopc::DatabaseObject {
public:

EString name;
EString idcard;
EString country;
static void iopcInit(iopc::Type& t) {

t.getAttribute("idcard")["db.primaryKey"]. ←↩
setBoolValue(true);

t.getAttribute("country")["db.primaryKey"]. ←↩
setBoolValue(true);

}
};
class Student : public Person {
public:

EString studcardid;
};

Class hierarchy in Example 4.3.1 shares two key attributes - idcard and c-
ountry. The IopcInit static method is invoked by the reflection mechanism
when the program starts. Usually it creates class metadata3 modifying the database
mapping behaviour of this class or of its attributes. In this case it tells the library
which attributes are part of the class composite key. In the generated SQL schema
(using the default vertical mapping), all table definitions include the two corre-
sponding key columns - see Example 4.3.2.

Example 4.3.2 SQL schema generated for DatabaseObject subclasses.
CREATE TABLE Person (

country VARCHAR2(2000), idcard VARCHAR2(2000),
name VARCHAR2(2000),
CONSTRAINT Person_pk PRIMARY KEY (idcard, country))

CREATE TABLE Student (
studcardid VARCHAR2(2000), idcard VARCHAR2(2000),
country VARCHAR2(2000),
CONSTRAINT Student_pk PRIMARY KEY (idcard, country))

3For more on this topic, see [?]. Also note that this time we use the enhanced attribute datatypes,
see [?].

62



OidObject guarantees an identity in form of an internally generated OID
to all of its descendants. Unique OID is assigned to any instance of OidObject
descendant at its creation time and remains unchanged during its lifetime. Oid-
Object descendants are able to use all types of database mapping and persistent
associations. Oid objects depend on database structures generated by the IOPC 2
library. These structures include simple or polymorphic views (as in the original
IOPC library - see Section 3.3.4) or an Oid - classname catalogue. The catalogue
is actually a regular mapping table associated with the OidObject class. Each
OID object in the database is represented by a row in the catalogue regardless of
the mapping type used. The catalogue table has three columns - OID, CLASS-
NAME (qualified name of the class this row - OID - belongs to) and SERIALID
(timestamp used by the cache layer).

Example 4.3.3 contains schema generated for the classes from the earlier Ex-
ample 4.2.1. Note that code of all SQL examples below is generated by the Oracle
10g driver. Source code of associated views can be found in appendix TODO:
priklad pohledu do appendixu .

Example 4.3.3 SQL schema generated for OidObject subclasses.
-- the oid - classname catalogue
CREATE TABLE OidObject (

CLASSNAME VARCHAR2(1000), OID NUMBER(10), SERIALID ←↩
NUMBER(10),

CONSTRAINT OidObject_pk PRIMARY KEY (OID))

-- mapping tables (using vertical mapping)
CREATE TABLE Person (

age NUMBER(5), name VARCHAR2(2000), OID NUMBER(10),
CONSTRAINT Person_pk PRIMARY KEY (OID))

CREATE TABLE Student (
studcardid VARCHAR2(2000), supervisor NUMBER(10), OID ←↩

NUMBER(10),
CONSTRAINT Student_pk PRIMARY KEY (OID))

CREATE TABLE PhdStudent (
scholarship NUMBER(5), OID NUMBER(10),
CONSTRAINT PhdStudent_pk PRIMARY KEY (OID))

CREATE TABLE Employee (
salary NUMBER(10), OID NUMBER(10),
CONSTRAINT Employee_pk PRIMARY KEY (OID))

63



4.3.2 Object mapping

Object mapping, as described in Section 2.3, is a new type of database mapping
introduced in the IOPC 2 library. It requires the underlying DBMS to support
definition of user defined abstract data types (ADT).

Object mapping can be used with some restrictions. First, only OID objects
can be marked for use with the object mapping type. Because structures required
for this kind of mapping are generated by the library and will surely not be reused
from existing databases, there is no reason why not to use OID objects. Working
with OID objects is convenient and also faster than any other alternative. Second,
object mapping is meant to be used for whole hierarchies of classes and thus no
other mapping type can be used in any of their descendants. In contrast, object
mapping hierarchy can be started at any level of inheritance tree of classes with
other mapping type.

This leads to several ways of how to use object mapping which should be con-
sidered when designing classes and data model.

• One ADT hierarchy for all persistent classes in the application. It also means
one table for all types and all classes. This can be achieved by telling the root
of all OID objects (class OidObject) to use object mapping.

• One ADT hierarchy per top-level class. Top-level classes (direct descen-
dants of OidObject) use the object mapping type. These classes and all
of their descendants are stored in separate tables and are represented by sep-
arate ADT hierarchies. OidObject with all object OIDs is mapped into a
separate relational table.

• ADT hierarchy started at a lower level of persistent class hierarchy. Ances-
tors of an object mapped type can use any other type of database mapping.
The base ADT definition consists of the OID attribute and attributes defined
in the corresponding class. So the base ADT table has same structure as it
was generated for a vertically mapped class. The horizontal approach (all
inherited attributes in the ADT definition) can be considered in the future.

Example 4.3.4 shows how the object mapping can be set for the Student and
PhdStudent classes and leaving its parent Person and the class Employee to
use the default vertical mapping.

64



Example 4.3.4 Using the object mapping.
class Person : public iopc::OidObject {
public:

EShort age;
EString name;

};
class Employee : public Person {
public:

EInt salary;
};
class Student : public Person {
public:

EString studcardid;
DbPtr<Employee> supervisor;
static void iopcInit(iopc::Type& t) {

t["db.mapping.type"].setStringValue("object");
}

};
class PhdStudent : public Student {
public:

EShort scholarship;
static void iopcInit(iopc::Type& t) {

t["db.mapping.type"].setStringValue("object");
}

};

This time we specify the class metadata db.mapping.type to change the
mapping type of the two classes to object mapping. Example 4.3.5 displays an
excerpt from the generated SQL schema.

The static methods insert_object, update_object and delete_o-
bject are used by IOPC 2 to insert, modify or delete the ADT instances. Con-
structors couldn’t be used because Oracle 10g doesn’t allow specifying its param-
eters in arbitrary order as required by the library.

65



Example 4.3.5 SQL schema from classes that use object mapping.

CREATE TABLE Person (
age NUMBER(5), name VARCHAR2(2000), OID NUMBER(10),
CONSTRAINT Person_pk PRIMARY KEY (OID))

CREATE OR REPLACE TYPE tStudent AS OBJECT (
OID NUMBER(10), supervisor NUMBER(10), studcardid ←↩

VARCHAR2(2000),
STATIC PROCEDURE insert_object(

p_OID NUMBER, p_studcardid VARCHAR2),
STATIC PROCEDURE update_object(

p_OID NUMBER, p_studcardid VARCHAR2),
STATIC PROCEDURE delete_object(

p_OID NUMBER)
) NOT FINAL

CREATE OR REPLACE TYPE tPhdStudent UNDER tStudent (
scholarship NUMBER(5),
STATIC PROCEDURE insert_object(

p_OID NUMBER, p_studcardid VARCHAR2, p_scholarship ←↩
NUMBER),

STATIC PROCEDURE update_object(
p_OID NUMBER, p_studcardid VARCHAR2, p_scholarship ←↩

NUMBER),
STATIC PROCEDURE delete_object(

p_OID NUMBER)
) NOT FINAL

CREATE TABLE Student OF tStudent (
CONSTRAINT Student_pk PRIMARY KEY (OID) )

4.3.3 Mapping algorithm prerequisites

The mapping algorithm operates with several lists of classes and attributes which
are pre-create at the start of the user application. These lists are generated for all
persistent classes - descendants of the DatabaseObject class.

• AllParents - a list of ancestor classes that have a corresponding database
table. This includes only classes that use horizontal or vertical mapping.
Classes that use filtered mapping do not have a associated database table
as their columns are inserted into one of their ancestors. Because object

66



mapped classes are handled in a different way, they are not inserted into this
list either. The list represents tables that will be accessed when performing
a CRUD operation on an instance of the current class. Only one database
operation is needed to modify database data belonging to a instance of any
class in a object-mapped class subgraph. See the examples at the end of this
section and also refer to the mapping algorithm description.

The list is created by level-order walking through the parent hierarchy strart-
ing with parents of the current class first. If the process encounters a horizontally-
mapped class, its parents are not processed (because horizontally-mapped
classes store all, even inherited attributes into one table). If the current class
derives from OidObject, and if OidObject doesn’t use object mapping,
OidObject is also appended to this list.

• FilteredTypes - list of classes that use table associated with the cur-
rent class as a destination for their attributes when filtered mapping is used.
Note that there must be at least one path between the source and destina-
tion classes in the inheritance hierarchy that does not contain a horizontally
mapped class.

• PersistentAttributes - list of persistent attributes declared in the
current class. Developers may declare some of the class attributes as tran-
sient. Transient attributes are ignored by the persistence layer.

• KeyAttributes - list of key attributes that are inherited or declared in
the current class. If the current class derives from OidObject, the OID
attribute is included in the list. A class cannot re-define key attributes if they
were already defined in one of its ancestors.

• InheritedAttributes - list of persistent attributes (retrieved from P-
ersistentAttributes) inherited from all persistent ancestors.

• AllPersistentAttributes - union of the PersistentAttribu-
tes and InheritedAttributes lists.

• MappedAttributes - list of attributes that are physically mapped into
table associated to the current class. In fact they represent columns of this
table. The list may include attributes from other classes. Attributes are cate-
gorized by their origin:

1. Persistent attributes of the current class. (PersistentAttribut-
es)

67



2. If the current class uses horizontal mapping, the list includes non-
key inherited persistent attributes from the InheritedAttribu-
tes list. Attributes inherited from the OidObject are excluded as
the Oid - classname catalogue (a table associated with OidObject)
is accessed even when using horizontal mapping.

3. Persistent attributes from classes that use filtered mapping - persistent
attributes from classes in the FilteredTypes list.

4. Inherited KeyAttributes - even if the class doesn’t employ hori-
zontal mapping.

This list is not generated for classes that use object mapping.

To understand how the lists are generated, see the following examples. First,
lists generated for the default scenario - all persistent classes use vertical mapping.
Lists for the Student class:

• AllParents: Person, OidObject

• FilteredTypes: no members

• PersistentAttributes: studcardid, supervisor

• KeyAttributes: oid

• InheritedAttributes: oid, serialid, classname (all from O-
idObject), name, age

• AllPersistentAttributes: oid, serialid, classname (all from
OidObject), name, age, studcardid, supervisor

• MappedAttributes: oid (key), studcardid, supervisor (regu-
lar columns)

Second, the class Student uses horizontal mapping and PhdStudent uses
filtered mapping to map its attributes to table associated with the Student class.
Only the contents of the AllParents, MappedAttributes and Filtere-
dTypes lists would change:

• AllParents: OidObject

• FilteredTypes: PhdStudent

• PersistentAttributes: studcardid, supervisor

68



• KeyAttributes: oid

• InheritedAttributes: oid, serialid, classname (all from O-
idObject), name, age

• AllPersistentAttributes: oid, serialid, classname (all from
OidObject), name, age, studcardid, supervisor

• MappedAttributes: oid (key), studcardid, supervisor (reg-
ular columns), age, name (inherited columns), scholarship (filtered
column)

Schema generated for this scenario would look like this:

Figure 4.3: SQL schema generated from classes using combined mapping

As you may see, there is no PhdStudent table as all its columns were ap-
pended to the Student table. As a result of the horizontal mapping, rows belong-
ing to these two classes do not have entries in the Person table.

And the last example - classes from the previous section. Object mapping
enabled for Student and its PhdStudent descendant, see Example 4.3.4 for
the class model definition. This time, the lists for the PhdStudent class:

• AllParents: Person, OidObject

• FilteredTypes: no members

• PersistentAttributes: scholarship

69



• KeyAttributes: oid

• InheritedAttributes: oid, serialid, classname (all from O-
idObject), name, age, studcardid, supervisor

• AllPersistentAttributes: oid, serialid, classname (all from
OidObject), name, age, studcardid, supervisor, scholarsh-
ip

• MappedAttributes: not generated.

4.3.4 The mapping algorithm

In this section, we will describe the algorithm for CRUD operations performed by
the IOPC 2 persistence layer. First, the top-level part of the algorithm for inserting,
updating and deleting persistent objects.

4.3.4.1 Inserting, updating and deleting persistent objects

Given an object O, the algorithm iterates through its parent class hieararchy (start-
ing with the class of O itself) and calls one of the Insert_Row() or Inser-
t_Object() methods on it (depending on which mapping type is used). The
Insert_Row method is described in Figure 4.5. Update_Row or Delete_Row meth-
ods have similar structure.

if O uses object mapping thenx1 Insert_Object(O) // Update_Object or Delete_Object

else if O uses horizontal or vertical mapping (O has a ←↩
corresponding db table) thenx2 Insert_Row(O, class of O) // Update_Row or ←↩
Delete_Row

end if

foreach class C in AllParents dox3 Insert_Row(O, C) // Update_Row or Delete_Row
end

Figure 4.4: Top-level part of the object-relational mapping algorithm

x1 First, the algorithm handles either the whole subgraph of object mapping
classes (as they are stored as one ADT instance at a time)

70



x2 or the class of the object being inserted (if it has its own associated database
table).x3 Then it iterates through ancestors of the objects’ class and inserts values of
attributes defined in them into a new database row.

Insert_Row(object O, class C):
foreach attr A in C.MappedAttributes

if A is not filtered attribute [category 1, 2, 4]
insert value of O.A into the new db row

else -- filtered attribute [category 3]x1 if class of O is descendant of class containing ←↩
the attribute A

insert value of O.A from O into the new db row
else

insert NULL as attribute A into the new db row
end if

end if
end

Figure 4.5: Description of the Insert_Row method. Not used for object map-
ping.

The method iterates through attributes (or actually columns of the associated
table to the class C) and inserts values to a new row. The process is quite self-
explanatory except for filtered attributes (category 3). If a class has two descen-
dants that use filtered mapping as shown in the Figure 4.6, a row representing an
instance of class A (or its descendant) will contain NULLs in columns of attributes
from class B and vice versa. Condition that solves this issue is marked (1) in the
algorithm.

71



Figure 4.6: Inserting objects using filtered mapping

The table in Figure 4.6 further illustrates the need for classes that use filtered
mapping to derive from OidObject. When loading an object with OID "1", the
object-relational layer has to know which class to instantiate and only OidObje-
ct provides such database structures that store this information.

Same algorithm as in Figure 4.5 is used for storing changes from objects that
already have a database identity (Update_Row method). Changes are propagated
as SQL UPDATEs with the WHERE generated from list of KeyAttribute-
s and their values. For OID objects this means that the WHERE filters only by
the objects’ OID value. Condition (1) from the algorithm is slightly modified in a
way that no NULLs are inserted but simply the NULL-attributes are not updated.
Deleting data is a trivial case - Delete_Row sends one SQL DELETE command to
delete the requested row. The DELETE command uses same WHERE clause as
the UPDATE does.

You can see that most of the work is done by correctly pre-generating the lists
from the previous section, in particular the MappedAttributes and AllPa-
rents lists. They actually contain projection of the class model on the database
structures according to the mapping types used.

4.3.4.2 Storing objects that use object mapping

As for the object mapping, the algorithm for inserting, updating or deleting is even
simpler (see (1) in Figure 4.4). IOPC 2 relies on the object-relational features pro-
vided by the underlying database. Insert operation usually creates a new instance

72



of relevant ADT and inserts it into a ADT hierarchy base table4. Moreover due
to significant differences between DBMSs in the area of object-relational features,
most of the work is delegated to the database driver side. IOPC 2 database drivers
are responsible for generating the needed database structures including the ADTs.
The library doesn’t take any special steps to support multiple inheritance, so it is
fully in charge of the database driver. If the ORDBMS doesn’t support multiple
inheritance of ADTs, it doesn’t make much sense to bend the database engine to
support it.

Example 4.3.5 in Section 4.3.2 discussing object mapping illustrates how the
needed database structures may look like. If we assume that these database struc-
tures are already created, inserts, updates and deletes are reduced to simple calls to
the database access layer. If using the Oracle 10g database driver, these calls are
only delegated further to the insert_object, update_object or delet-
e_object static methods of corresponding ADTs.

The only additional task the object mapping requires is to decide which per-
sistent class attributes will be mapped to ADTs. The simplest scenario is if all of
the persistent classes starting with OidObject use object mapping - all attributes
will be mapped to corresponding ADTs and point (3) in the general algorithm (Fig-
ure 4.4) will be skipped. However, if the object-mapping hierarchy is started at a
lower level and derives for example from a class that uses vertical mapping, the at-
tributes defined in classes "above" the root(s) of the object-mapping hierarchy must
be skipped and must not be propagated to the corresponding ADTs (as described
in Section 4.3.2).

4.3.4.3 Loading objects from database

Figure 4.7 illustrates how object instances are loaded from database.

4In DB2 the instance would be inserted into a table associated with that ADT [?].

73



if O uses object mapping
Load_Object(O)

else if O uses horizontal or vertical mapping (O has a ←↩
corresponding db table) then

Load_Row(O, class of O)
end if

foreach class C in AllParents do
Load_Row(O, C)

end

Figure 4.7: Iterative loading algorithm

The algorithm is very similar to the previous one (Figure 4.4). Retrieving in-
stances in such way - class by class - is quite inefficient. The algorithm can be
implemented as pre-generated views executing queries that join the involved ta-
bles. The views (simple and polymorphic views) are generated for descendants
of OidObject. Instead of sending multiple SELECTs to retrieve data directly
form the mapping tables, only one SELECT executed on a simple view is suffi-
cient. The algorithm just loads values of AllPersistentAttributes from
corresponding simple view. Source code of these views can be found in [?].

Iterative algorithm (without views) is used for classes that derive from Dat-
abaseObject (and not from OidObject) and for instances that are requested
to be exclusively locked in database. Rows belonging to such instances must be
locked one-by-one usually by sending SELECT FOR UPDATE statements.

Modifying these views to be updatable for inserts, updates and deletes was con-
sidered, but not included into this release. Current DBMSs place many restrictions
on the way how updatable views should be constructed and used. Most of them
etirely disallow using joined tables in updatable views; Oracle for example sup-
ports updatable join views, but allows only columns from one table to be updated
at a time5.

4.3.4.4 Loading classes that use object mapping

Again, loading instances of classes that use object mapping is a very simple task.
In both Oracle and DB2, single SELECT statement can load all attributes of an
ADT. If all classes of our example class model used object mapping, a SELECT
statement to load a single Student instance would look like Example 4.3.6.

5see [10] - Database Administrator’s Guide

74



Example 4.3.6 Loading objects using ADTs from an Oracle database
SELECT

TREAT(VALUE(X) AS tStudent).OID AS OID,
TREAT(VALUE(X) AS tStudent).CLASSNAME AS CLASSNAME,
TREAT(VALUE(X) AS tStudent).age AS Person_age,
TREAT(VALUE(X) AS tStudent).name AS Person_name,
TREAT(VALUE(X) AS tStudent).studcardid AS ←↩

Student_studcardid,
TREAT(VALUE(X) AS tStudent).supervisor AS ←↩

Student_supervisor
FROM OidObject O
WHERE O.OID = 2

Because, as mentioned before, object-mapping hierarchies can be started at
lower level and its roots can derive from non-object-mapped classes, either iterative
algorithm from Section 4.3.4.3 or pre-generated views are used to retrieve object
instances from database.

4.4 Conclusion

If we look at the table from Section 3.4 we may see changes, mostly improvements
in many of the listed areas:

• IOPC 2 added another mapping type - the object mapping and further en-
hanced the O/R mapping capabilities.

• IOPC 2 supports read-only databases, it even supports inheritance between
non-OID classes (tables) if the involved tables share the same set of keys.

• The library is based on a modular design allowing it to be used in several
configurations and with various database drivers.

• IOPC 2 provides a reflection feature which allows users to inspect the struc-
ture of reflection capable classes at run-time. Reflection works almost trans-
parently as it needs no descriptive macros from the application developers.

• Reflection provides metadata description for the O/R mapping mechanism
which uses them to provide effortless object persistence services to the ap-
plication developers. However, there are some limitations when compared to
the IOPC predecessor which result from the exchange of OpenC++ for GC-
CXML - for example the need to use enhanced data types in some scenarios.
More on this can be found further in the text. TODO: pridat odkazy

75



Remaining topics are discussed in the following chapter. Thesis conclusion
TODO: odkaz contains final library comparison and evaluation.

76



Chapter 5

Literature used

[1] Jan Hadrava, Správa persistentních objektů, Master Thesis, 2004.

[2] Wikipedia, Object database, URL: http://en.wikipedia.org/wiki/-
ODBMS.

[3] Josef Troch, Persistence objektů v C++, Master Thesis, 2004.

[4] Michal Kopecký, Object persistency in C++, Doctoral Thesis,
2004.

[5] Michal Kopecký, POLiTe User’s Reference, 2002.

[6] A. Silberschatz et al, Applied Operating System Concepts, 2000.

[7] N. Megiddo and S. M. Dharmendra, ARC: A Self-Tunning, Low
Overhead Replacement Cache, March 31, 2003.

[8] Frank Manola and Jeff Sutherland, SQL3 Object Model,
URL: http://www.objs.com/x3h7/sql3.htm.

[9] Michael Stonebraker and Dorothy Moore, Object-Relational
Dbmss: the Next Great Wave, 1996.

[10] Oracle, Oracle Database Online Documentation 10g Release 2,
URL: http://www.oracle.com/pls/db102/homepage.

77

http://en.wikipedia.org/wiki/ODBMS
http://en.wikipedia.org/wiki/ODBMS
http://www.objs.com/x3h7/sql3.htm
http://www.oracle.com/pls/db102/homepage

	Introduction
	Persistence layer requirements
	The identity of persistent objects
	Database mapping requirements
	Object-relational databases
	Database mapping requirements continued
	Querying
	Caching
	Reflection
	Library architecture
	Conclusion

	Evolution of the IOPC 2 library
	POLiTe
	Architecture
	The data access layer
	Metamodel and object-relational mapping.
	Persistent object manipulation
	Querying
	Conclusion

	POLiTe 2
	Architecture of the POLiTe 2 library
	The cache layer
	Persistent object manipulation
	Querying
	Conclusion

	IOPC
	Features of the library
	Architecture of the library
	IOPC SP
	IOPC DBSC
	IOPC LIB
	Conclusion

	Library comparison

	Basic concepts of the IOPC 2 library
	Library architecture
	Obtaining the metamodel description
	Object relational mapping in the IOPC 2 library
	Base classes
	Object mapping
	Mapping algorithm prerequisites
	The mapping algorithm

	Conclusion

	Literature used

