C++ Object Persistency Using Object/Relational
Databases

Petr Cermak

March 8, 2009

Contents

1 Introduction
2 Persistence layer requirements
2.1 The identity of persistent objects
2.2 Database mapping requirements
2.3 Object-relational databases
2.4 Database mapping requirements continued
2.5 Querying e
2.6 Caching
27 Reflection L
2.8 Library architecture,
29 Conclusion
3 Evolution of the IOPC 2 library
3.1 POLiTe e
3.1.1 Architecture L
3.1.2 Thedataaccesslayer
3.1.3 Metamodel and object-relational mapping.
3.1.4 Persistent object manipulation
3.1.5 Querying
3.1.6 Conclusion
32 POLiTe2 e
32.1 Thecachelayer
3.2.2 Using the persistent objects
323 Conclusion
33 ThelOPClibrary
3.3.1 PFeaturesofthelibrary
3.3.2 Architecture of the library
333 Conclusion o
4 Literature used

[S=

(N

15
15
16
16
17

19
19
19
20
21
24
27
28
29
29
30
31
31
31
31
34

37

List of Figures

1.1

2.1
22
23
24
2.5
2.6

3.1
32
33

34

IOPC2evolution 3

Example class hierarchy 6
Vertical mapping tables L. 7
Horizontal mapping tables 8
Filtered mapping tables 8
Combined mapping tables 9

7

Proposed architecture of the O/R mapping library 1
Architecture of the POLiTe library 20
POLiTe persistent object states 25
Architecture of the IOPC library TODO: predelat obr., pripsat
OpenCH+... e e 32
Structure of the IOPCLIB 34

Anotace

Anotace TODO: doplnit

Chapter 1

Introduction

Today, object-oriented languages represent standard instruments for business appli-
cation and information system development. These systems usually operate with
large amounts of persistent data stored in relational database management systems
(RDBMS). Data in RDBMSs are however represented differently from data in the
application layer. Developers need to do a lot of programming overhead to deal
with this so-called impedance mismatch everytime they want to move data between
relational databases and application-level object models.

Object-oriented database management systems (OODBMS) try to mitigate the
impedance mismatch for example by providing navigation using pointers instead
of using joins as in the relational databases. Despite theirs advantages the object-
oriented databases are not as widely used as the relational databases. Mostly be-
cause of the lack of various tools like reporting, or OLAP' and due to the industry
standards pushed by the big players - Oracle, Microsoft and IBM. Moreover many
of RDBMS creators already addressed the impedance mismatch issue by incorpo-
rating object-oriented features into their products. Doing it a new kind of database
management system, object-relational database management systems (ORDBMS),
were created.

Another approach to bypassing the impedance mismatch is to isolate the devel-
oper from direct data manipulation in the database at application level. This goal
can be accomplished by using an object-relational (O/R) mapping layer. This layer
transparently maps relational data into application object model and vice versa.
The O/R tools usually offer additional services like object querying or caching.

Current information systems are often written in high-level languages like Java
or C#. There exist established O/R mapping tools for these environments. Well-
known is Hibernate” for Java and nHibernate® for C# or relatively new ADO.NET
Entity Framework from Microsoft*.

Isee [2]

Zhttp://www.hibernate.org/

3http://www.nhibernate.org/
“http://msdn.microsoft.com/en-us/library/bb399572.aspx

http://www.hibernate.org/
http://www.nhibernate.org/
http://msdn.microsoft.com/en-us/library/bb399572.aspx

O/R mapping tools for such languages can use their feature called reflection.
Reflection allows program to find out information about its own data model and to
modify it at run-time. The O/R mapping layer then can easily inspect the structure
of the classes being mapped, and based on this information, it can transparently
load or save data from/to the underlying database. Langauges that support reflec-
tion are often referred to as reflective languages.

Another frequently used language in this area is C++. Unfortunately, C++ is
not a reflective language, so the building of O/R mapping layer is a bit more dif-
ficult. The goal of this thesis is to develop such a mapping library, which should
work as transparently as possible. TODO: A good O/R mapping library can help
C++ application developers to focus on other areas than on complicated database
access and can move the C++ development towards the higher level reflective lan-
guages. To achieve this goal the library uses GCCXML, a XML output extension
to GCC. GCCXML helps the O/R layer to get a description of the class model used
in the program and to simulate the reflection. - do Abstraktu Another goal of this
thesis is to examine possibilities the ORDBMSs can provide to a O/R mapping
library.

One of goals of this thesis was to use advantages of three previous projects.Their
common predecessor is the POLiTe library® was developed as a part of doctoral
thesis [4]. Two follow-ups came after this work as master theses focusing on dif-
ferent areas of the O/R mapping concept:

e Master thesis [1] (called POLiTe 2 in further text) addressed mainly the per-
formance and notably enhanced functionality of the object cache. It also
added multithreading support and made the interface of the library safer to
use.

e Mater thesis [3] (IOPC®) designed a new persitence layer. The main ad-
vantage of this new layer is transparent application development without the
need to additionally describe classes in it. It uses OpenC++ source-to-source
translator to analyze and prepare the source code for the object-relational
mapping. Even though brand-new interface was created, the library still sup-
ports classes written in the POLiTe-style.

SPersistent Object Library Test
®Implementation of Object Persistency in C++

POLiTe

v v
IOPC POLiTe 2

IOPC 2

Figure 1.1: IOPC 2 evolution

The IOPC 2 library provided in this thesis not only merges the development
back into one product offering most of previously implemented features without
their drawbacks. Furthermore, the library implements new ideas like standalone re-
flection mechanism, additional mapping type using object-relational database abil-
ities and many other. TODO: It should represent a solid, flexible and extensible
platform for use and for future development. - do zaveru

In the next TODO: two chapters we will introduce basic concepts of the object-
relational mapping, discuss new features of ORDBMSs and describe requirements
ang goals of the IOPC 2 implementation. Then, in the TODO: fourth chapter,
evolution of the IOPC/POLiTe libraries will be presented in the context of require-
ments placed and their features will be compared with the new IOPC 2 imple-
mentation. In conclusion we will evaluate the achievements of this thesis and will
propose areas for further development. Appendices contain a user guide TODO:
and additional overview tables .

Enclosed DVD contains library source code with examples, binary distribution
for linux, documentation and in the first place a VM Ware image with pre-installed
environment. The image contains Ubuntu Linux, freely distributable Oracle XE
database, latest GCCXML and all other IOPC 2 dependencies. The library source
code and source code of the examples is stored in the image as an Eclipse CDT
project. So all the examples can be modified, compiled and run right away.

TODO: Predelat citations - precislovat

Chapter 2

Persistence layer requirements

Sections in this chapter analyze the requirements that may be imposed on a O/R
mapping library and were taken into account during design and implementation
phase of the development.

2.1 The identity of persistent objects

In the world of object-oriented programming object identity represents an object
property that helps to distinguish objects from each other. Even if two distinct
objects have same values of all their attributes and so their inner state is identical,
they are still different instances with different identity. A reference to an object is
a closely related term to the identity as it uses this identity to describe the object it
is referring to.

If we consider entries in a relational table as objects, the identity of these ob-
jects could be based on any key in the table - usually the primary key. Persistence
layer would then use such a key as a description of object identity on the applica-
tion level.

In object-oriented systems, where database is used only as a mere storage of
the object model and/or the design focuses on the application-tier, an object iden-
tifier (OID) approach is used. OID is a name for a special table column and for
corresponding class attribute which has no business meaning. On the application
level it is usually hidden from users or application developers. OID contains an
identifier, usually a number, UUID' or a list of numbers, which is unique for each
persistent object within the database scope. Object’s OID never changes during
its lifetime. OID is mapped into database tables as a surrogate key. Instances of
classes containing an OID attribute are called OID objects further in the text.

Another approach is needed for systems built upon an existing database, for
systems where the use of natural, not surrogate, keys is required or for systems
with read-only or no-schema-changes-allowed databases. The object-relational

A Universally Unique Identifier

layer should be able to absorb identity of persistent objects from keys (even multi-
column keys) in existing schema. We will call such objects as database objects.

In several cases, we may want the object-relational layer to manipulate objects
without any identity. These objects may represent results of aggregation queries,
rows from non-updateable views or rows from tables without any keys. Transience
is an important feature of these objects: their modified state cannot be stored back
to the underlying database - origin of the data they contain may not even be tracable
back to particular row and/or particular table.

The all-purpose O/R mapping layer should support OID objects as well as
database objects and even transient objects for query results.

2.2 Database mapping requirements

Persistence layer considered in the context of this thesis should be able to ma-
nipulate persistent instances of certain classes. These classes are called persistent
classes, its instances persistent objects. Storing objects to database implies that the
layer should store their attribute values to underlying database structures. Because
all predecessors of this thesis used relational database systems as their persistent
storage, let’s focus first on this area first.

Persistent classes would be represented as tables and their attributes as their
columns. Instances of persistent classes would be inserted into these tables as rows
containing instance attribute values associated with corresponding table columns.
Requirements on a basic persistence library could be:

o Ability to associate persistent classes with database tables

e Ability to map attributes of these classes on columns in associated tables.
This means that the layer should be able to store attributes of certain C++
types (basic numeric types, strings) into the database as column values.

Classes can also contain attributes of structured types or collections, which
are often mapped into separate tables or split into more columns in the rela-
tional model.

Last attribute type to be discussed is an association (C++ pointer/reference).
Association can be modeled using foreign key relationship between match-
ing tables. The persistence layer should be able to handle single associations
as well as collections of associations.

e An optional requirement may be an ability to generate required database
schema in form of a SQL create (or drop) script. The persistence layer may
require its own structures in the underlying database or it may be able to
operate upon existing database schema.

e Ability to query subsets of object model content. The layer should provide
a query language that would abstract from the physical representation of the
object model in the database.

Up to now we have considered only single classes without inheritance relations.
However, in C++ classes can form complex inheritance hierarchies and it is a natu-
ral requirement to be able to store descendants of persistent classes too. There are
several ways how to store these hierarchies into a relational database. To help to
illustrate these mapping types see the Figure 2.1 for example class hierarchy. This
hierarchy will also be used and modified further in the text.

Person

+ age: int
+ name: string

T

Student Employee
+ studcardid: string + salary: int
PhdStudent
+ scholarship: int

Figure 2.1: Example class hierarchy

Vertical mapping is a most common (and natural) way of mapping attributes
of persistent classes in an inheritance hierarchy into tables in a relational database.
Each class in this hierarchy has one associated table in the database. Only values
from attributes declared in correspondent classes are stored into these tables. This
means that attributes declared in current class are mapped into its associated table,
attributes from parent class are mapped into a "parent" table etc. Storing one object
invokes a cascade of database inserts. Similar rules apply for updates, deletes and
selects. However, selects can be simplified using table joins and database views.
This solution offers good performance for shallow hierarchies, which is getting
worse with the inheritance graph getting deeper. It is a best choice for scenarios
where polymophism does matter - by querying one table we easily get instances of
associated class and its descendants.

Let’s consider following instances of the classes from Figure 2.1:

Student (name: "Richard Doe", age: 22,
studcardid: "WCD-3223")

PhdStudent (name: "Joe Bloggs", age: 27,
studcardid: "PHD-1234", scholarship: 12000)

Employee (name: "Ola Nordmann", age: 45,
salary: 60000)
Person (name: "Mary Major", age: 60)

Vertical mapping will spread data from these instances into four tables as illus-
trated by the Figure 2.2. The tables are arranged so that attribute values belonging
to one particular class are displayed in the same row. To be able to join data from
the tables we use surrogate OID as explained in the previous chapter. All rows
belonging to one particular object are assigned the same OID.

Person

OID | Name Age | Student

1 Mary Major 60 OID | Studcardld PgsStudent

2 |RichardDoe (22 |2 |WCD-3223 OID |Scholarship | Employee

3 Joe Bloggs 27 |3 PGS-1234 3 12 000 OID | Salary

4 Ola Nordmann (45 4 60 000

Figure 2.2: Vertical mapping tables

Horizontal mapping offers better performance for scenarios where we don’t
need polymophic queries - accessing descendants of specific class. Again, each
persistent class in a hierarchy has one associated table into which its instances
store their attributes. The difference from vertical mapping is that these tables
contain even attributes inherited from parent persistent classes. Rows in these ta-
bles contain enough information to load complete persistent class instances, thus
no cascade operations are needed. Every instance of horizontally mapped class is
mapped only into one table row in the database.

As you can see in Figure 2.3 - queries using polymorphism can be very hard
to perform. Finding a specific object of Person type or its descendants involves
looking into all the tables. However, opposite to the vertical mapping, if we work
with objects of specific type (not including descendants), we don’t need any joins
in select statements or cascade inserts/updates.

Filtered mapping assigns only one database table to all persistent classes in one
inheritance hierarchy - see Figure 2.4. This table contains columns that represent
all attributes from all classes in that hierarchy. Filtered mapping doesn’t suffer
from disadvantages of two previous approaches - it performs wery well on poly-
morfic data and doesn’t involve cascaded operations/joins. A disadvantage of this
approach is excesive storage requirement. Most of the rows in the table will contain
empty cells in columns that belong to attributes from classes not being in ancestor
relationship of the matching class or from the matching class itself. Second thing
is that it is necessary to add a column telling us which class the rows belong to.

Person

OID | Name Age

1 Mary Major 60

Student

OID | Name Age |Studcardld

2 Richard Doe |22 [WCD-3223

PgsStudent

OID | Name Age Studcardld Scholarship
3 Joe Bloggs 27 PGS-1234 12 000
Employee

OID | Name Age Salary

4 Ola Nordmann |45 60 000

Figure 2.3: Horizontal mapping tables

As we have all rows in one table there is no other easy way how to distinguish the
instance types.

Person

OID |Name Age |StudCardId | Scholardhip |Salary |Class

1 Mary Major 60 |NULL NULL NULL |Person

2 Richard Doe |22 |WCD-3223 |NULL NULL | Student

3 Joe Bloggs 27 [PGS-1234 12 000 NULL | PgsStudent
4 Ola Nordmann |45 |(NULL NULL 60 000 |Employee

Figure 2.4: Filtered mapping tables

Combined mapping is a combination of mappings mentioned above. It allows
users to use all kinds of mappings in one inheritance hierarchy. Combined map-
ping is the most sophisticated variation that allows users to specify these mappings
according to their needs. It is also quite complex for implementation, it has some
constraints how the mapping types can be used and it is not well maintainable on
the database side. Database structures created for combined mapping would re-
quire nontrivial constraints if their content were modified other way than using

the persistence layer that created the structures. The persistence layer should hide
this complexity beyond views to provide at least convenient read-only access. The
mapping algorithm used in the IOPC 2 library will be described later in [?]. To see
how the combined mapping can be used refer to Figure 2.5.

Person

OID | Name Age | Employee

1 Mary Major 60 | OID |Salary

4 Ola Nordmann |45 4 60 000

Student

OID | Name Age |Studcardld Scholarship Class

2 Richard Doe |22 [WCD-3223 NULL Student

3 Joe Bloggs 27 | PGS/1234 12 000 PgsStudent

Figure 2.5: Combined mapping tables

The Employee class uses vertical mapping, the Student class uses hori-
zontal mapping and the PhdStudent class uses filtered mapping. Classes that
use filtered mapping can choose into which of their ancestors they will be mapped
to. Class PhdStudent is mapped to the table table belonging to the Student
class.

2.3 Object-relational databases

Object-relational databases offer higher level of abstraction over the problem do-
main. They extend relational databases with object-oriented features to minimise
the gap between relational and object representation of application data known as
the impedance mismatch problem. One of the features allows developers to cre-
ate new custom data types and extend them with custom functions. Main features
of the object-relational databases are summarised below. For detailed information
about user defined types and other features of object-relational databases refer to
[8], [9]. This area is introduced by an 1999 revision of the ISO/IEC 9075 family
of standards, often referred to as SQL3 or SQL: 1999. Because the level of imple-
mentation of the standard varies between available products, you may need to see
their manuals too. For Oracle 10g refer to [10].

User-defined types are custom data types which can be created by users using
the new features of object-relational database systems. These types are used in
table definitions the same way as built-in types like NUMBER or VARCHAR.
There are several kinds of UDTs - for example - distinct (derived) types, named

row types, and most importantly the abstract data types (ADT), which we will
focus on in the following paragraphs.

ADT is a structured user defined type defined by specifying a set of attributes
and operations much in a similar way to object-oriented languages like C++ or
Java. Attributes define the value of the type and operations its behaviour. ADTs
can be inherited from other abstract data types (in terms of object-oriented pro-
gramming) and can create type hierarchies. These hierarchies can reflect the struc-
ture of data objects defined in application-tier modules. Instances of ADTs are
called objects and can be persisted in database tables. See Example 2.3.1 for an
illustration how these types are defined and used in Oracle ORDBMS.

Example 2.3.1 Using object types in Oracle

—-— type definitions

CREATE TYPE TPerson AS OBJECT (
name VARCHAR2 (50),
age NUMBER (3)
) NOT FINAL;

CREATE TYPE TStudent UNDER TPerson (
studcardid VARCHAR2 (20)

) NOT FINAL;

CREATE TYPE TPhdStudent UNDER TStudent (
scholarship NUMBER (10)

) NOT FINAL;

CREATE TYPE TEmployee UNDER TPerson (
salary NUMBER (10)

) NOT FINAL;

—-— storage
CREATE TABLE Person OF TPerson;

-— fill it with data

INSERT INTO Person VALUES (
TPerson ('Mary Major’, 60)

)

INSERT INTO Person VALUES (
TStudent (' Richard Doe’, 22, '"WCD-32237")

)

INSERT INTO Person VALUES (
TPhdStudent (’ Joe Bloggs’, 27, '"PHD-1234’, 12000)

)

INSERT INTO Person VALUES (
TEmployee (' Ola Nordmann’, 45, 60000)

)i

First, the supertype TPerson and its descendants TStudent, TPhdStud-
ent and TEmployee are defined. The NOT FINAL keyword allows us to create

10

subtypes of given types. Then physical storage table Person is created. This
table can hold not only instances of the TPerson type but also instances of its
descendants. Accessing these instances is demonstrated in the following Example
2.3.2.

Example 2.3.2 Accessing objects in Oracle

SELECT VALUE (x) FROM Person x;

—— returns:

TPERSON (' Mary Major’, 60)

TSTUDENT (' Richard Doe’, 22, ’'WCD-32237")
TPHDSTUDENT ('’ Joe Bloggs’, 27, 'PHD-1234’, 12000)
TEMPLOYEE (' Ola Nordmann’, 45, 60000)

—— accessing descendant attributes:
SELECT
TREAT (VALUE (x) AS TStudent) .studcardid AS studcardid
FROM Person x
WHERE VALUE (x) IS OF (TStudent)
—— returns:
WCD-3223
PHD-1234

First, we list all objects stored in the Person table. Then we list all student
card IDs of all student objects that are stored in the table.

Nested tables. Nested tables violate the first normal form in a way that they
allow the standard relational tables to have non-atomic attributes. Attribute can be
represented by an atomic value or by a relation. Example 2.3.3 illustrates how to
create and use nested tables in Oracle database system. The example modifies the
Person type by adding a list of phone numbers to it. Interesting is the last step
in which we perform a SELECT on the nested table. To retrieve the content of
the nested table in a relational form, the nested table has to be unnested using the
TABLE expression. The unnested table is then joined with the row that contains
the nested table.

11

Example 2.3.3 Nested tables in Oracle

—-— a type representing one phone number
CREATE TYPE TPhone AS OBJECT (

num VARCHARZ2 (20),

type CHAR(1)

)

—-— a type representing a list of phone numbers
CREATE TYPE TPhones AS TABLE OF TPhone;

—— the modified TPerson type
CREATE TYPE TPerson AS OBJECT (
name VARCHAR2 (50),
age NUMBER (3),
phones TPhones
) NOT FINAL;

—-— storage
CREATE TABLE Person OF TPerson
NESTED TABLE phones STORE AS PhonesTable;

-— fill it with data
INSERT INTO PERSON VALUES (
TPerson ('Mary Major’, 60, TPhones (
TPhone (' 123-456-789", 'W’'),
TPhone (' 987-654-321", ’"H'")

—— obtaining a list of phones of a particular person
SELECT y.num, y.type

FROM Person x, TABLE (x.phones) vy

WHERE x.name = ’'Mary Major’;

—— returns rows:
123-456-789 W
987-654-321 H

Please note, that the nested table in Example 2.3.3 may need an index on an
implicit hidden column nested_table_id to prevent full table scans on it.

Collection types. SQL3 defines also other collection types like sets, lists or
multisets. In addition to nested tables, Oracle implements the VARRAY construct
which represents an ordered set (list). The main difference is that VARRAY col-
lection is stored as a raw value directly in the table or as a BLOB?, whereas nested
table values are stored in separate relational tables.

Reference types. We can think of the database references as of pointers in the

ZBinary large object

12

C/C++ languages. References model the associations among objects. They reduce
the need for foreign keys - users can navigate to associated objects through the
reference. In the following Example 2.3.4 we will add a new subtype TEmploy-—
ee and modify the TStudent type from previous examples by adding a reference
to the student’s supervisor, which is an employee, to it. Note that we need to cast
the reference type REF(x) to REF TEmployee in the INSERT statement because
REF(x) refers to the base type TPerson.

Example 2.3.4 References in Oracle

—-— type definitions

CREATE TYPE TPerson AS OBJECT (
name VARCHAR2 (50),
age NUMBER (3)
) NOT FINAL;

CREATE TYPE TEmployee UNDER TPerson (
salary NUMBER(10)

)i

CREATE TYPE TStudent UNDER TPerson (
studcardid VARCHAR2 (20),
supervisor REF TEmployee

)i

—— storage
CREATE TABLE Person OF TPerson;

—— insert an employee into the Person table
INSERT INTO Person VALUES (TEmployee (’0Ola Nordmann’, 45, —
60000))
—— insert a student with a reference to his supervisor
INSERT INTO Person
SELECT TStudent (' Richard Doe’, 22, ’'WCD-3223',
TREAT (REF (x) AS REF TEmployee)))
FROM Person x
WHERE x.name = ’'0Ola Nordmann’;

—— select all students with their supervisors

—— dereferencing uses dot notation

SELECT x.name, TREAT (value(x) as TStudent) .supervisor. <«
name

FROM Person x

WHERE VALUE (x) IS OF (TStudent)

—— returns a row:
Richard Doe, 0Ola Nordmann

13

2.4 Database mapping requirements continued

As we already know about the object-relational databases, These new features of
object-relational databases can be used to enhance functionality of described map-
ping types. They can also be a basis for a new mapping type that will entirely
depend on the use of ORDBMS. First, let’s have a look how the attribute mapping
can be improved:

e Collections (C++ containers) can be mapped into single columns as nested
tables or instances of one of the SQL3 collection data types.

e Structured attributes (C++ struct or class) can be mapped into single columns
as instances of SQL3 structured data types.

e Associations (C++ pointers or references) can be mapped as SQL3 refer-
ences.

Second, let’s solve mapping of classes and inheritance hierarchies. It is quite
obvious that user-defined types can be used for this task. Abstract data types can be
created for each class in the inheritance hierarchy by copying its inheritance graph.
Instances of the types can be then inserted into one table. The earlier presented
Example 2.3.1 displays structures that may be generated for classes from Figure
2.1 using such kind of database mapping.

This type of mapping is called object mapping in the IOPC 2 library. Its benefit
is that it moves most of the responsibilities of the persistence layer to the under-
lying database system. For example obtaining a list of fully-loaded instances of
specific type and its descendants involves several joins in the vertical mapping (fil-
tered mappings or other variations using the combined mapping). This must be
"planned" by the persistence layer. All such polymorphic queries are best per-
formed using the object mapping (see the Example 2.4.1), as all these tasks can be
acomplished only using the user-defined types and SQL3 queries or statements.

Example 2.4.1 A polymorphic query using object-relational features of the Oracle
database.

SELECT
name, age, TREAT (VALUE (x) AS TPhdStudent) .studcardid AS <
studcardid,
TREAT (VALUE (x) as TPhdStudent) .scholarship as <«
scholarship

FROM Person Xx
WHERE VALUE (x) IS OF (TPhdStudent)

A serious problem for a persistence layer using this object mapping is that
there are major differences between database systems in the object-relational area.

14

For example DB2 doesn’t offer any type similar to the Oracle VARRAY data type.
Or another example - in DB2 you have to create whole table hierarchy for inher-
ited object types - much like as you would when creating storage structures for a
vertically-mapped data type. These issues imply that the persistence layer should
be flexible and modular enough to be able to support different database systems.
Another problem is multiple inheritance of ADTs. Although SQL3 standard
supports multiple inheritance, it is not implemented neither in the current version
of Oracle nor in the current version of DB2. The problem is discussed later in [?]

2.5 Querying

Object-relational systems allow users usually to load data in two ways. Either
by traversing the model of persistent objects through associations and letting the
persistence layer to load missing data into referenced local copies or by exploiting
the ability of the underlying DBMS to execute SQL queries against the data stored
in it. The persistence layer can provide direct access to the database by allowing
its users to run SQL queries on tables or views the layer generated. This approach
is not very user friendly as it requires the users to know the internals of database
mapping performed by the persistence layer. The layer should therefore offer its
own query language which will hide the complexity of the database structures.
Queries in such language can be passed as character strings or as objects which
represent attributes, values, comparison criteria etc. Depending on the level of
implementation, users may filter only objects of one inheritance hierarchy by their
attribute values, perform polymorphic queries returning objects of specified type
and its descendants or they may query associations between objects. This queries
represented in natural language would be:

e Find all students older than 26. (Age >=26)

e Find all students including Ph.D. students. (Actually all queries may be
modified to include Ph.D. students).

e Find all students which are supervised by Mrs. Ola Nordmann. (Using the
modified model from Example 2.3.4)

2.6 Caching

The role of caching is to speed up applications that use persistent objects by delay-
ing database mapping operations. This is generally achieved by taking ownership
of these objects when they are not currently in use by the user application. If the
user applications needs an already released object again, the caching facility® looks

3Cache. All related structures will be called as the cache layer.

15

it up in its catalogue and if found, returns it to the user application, saving the time-
consuming database operations. The database operations for storing, updating or
loading persistent objects are controlled by the cache layer, not by the user applica-
tion. The layer is therefore responsible for creating and destroying persistent object
instances.

2.7 Reflection

Users of the persistence layer may want to examine the structure of persistent
classes at run-time. This is not of a big issue in reflective languages like Java
or C#, but in the C++, which is not reflective language, this requirement may pose
a problem. Yet not necessarily, because the persistence layer must know about the
structure of classes it is mapping to database. So, it only depends on the particular
implementation of a C++ O/R mapping library whether it provides access to this
information and how.

If the library puts these introspection features behind unified interface and al-
lows to inspect wider set of classes than only the persistent classes, it may provide
at least simpler alternative to reflection features offered by reflective languages.
This may be a big advantage, because developers tend to include O/R mapping
features into their application frameworks and O/R mapping is often one of the pil-
lars of infrastructural part of business applications. Therefore it reduces the need
for other reflection library.

2.8 Library architecture

Based on the discussion in previous sections, we are able to specify three relatively
autonomous areas a C++ persistence library should cover:

e Database access. The library should not be database dependent. To achieve
this goal, the database access must be virtualised by providing an interface to
other parts of the library which will hide the differences between databases
the users may use. The library should contain modules called database
drivers translating and dispatching requests from the interface to concrete
database instances. Database drivers should be separate modules allowing
users to select between them without the need to recompile the whole li-
brary. The architecture should be flexible enough to be able to handle rela-
tional as well as object-relational database systems. It would be also nice
if the whole database access infrastructure was a stand-alone module as the
discussed database interface could be used as a database access library.

e Reflection. If the reflection capabilities, as described in the previous sec-
tion, were provided as a stand-alone module, the library could be used in a
reflection library configuration.

16

e Object-relational mapping. The complete O/R mapping library would need
both, the database access and reflection configurations: The reflection to in-
spect the structure of the persistent classes and the database access interface
to load and store them from/to a database. The library should provide a
module which will manage and perform the O/R mapping including related
tasks as caching and querying. This O/R mapping module will depend on
the previous two modules.

DB Driver1 DB Driver 2

Database access Reflection

™ 7

Objectrelational
mapping

Figure 2.6: Proposed architecture of the O/R mapping library

2.9 Conclusion

In this chapter, we analyzed basic aspects of an O/R mapping library implemen-
tation. Based on this analysis, we can summarise the requirements on the library.
Some of the requirements are required while some are optional. We list them for
further reference.

e Common O/R mapping requirements

— Ability to associate persistent classes with database tables

— Ability to map attributes of persistent classes to database columns or
attributes in instances of user-defined types

o Ability to use at least one type of O/R mapping (better all of them):

— Horizontal

— Vertical

17

— Filtered
— Object
— Combination of the mapping types

Ability to persist references between objects
Ability to persist collections of objects

Ability to generate required database schema or ability to work with existing
non-mutable database schema

Querying in the object model context.
Object caching.
Reflection

Modular library architecture

18

Chapter 3

Evolution of the IOPC 2 library

The following paragraphs outline design and functionality of the IOPC 2 library
predecessors.

3.1 POLiTe

The common predecessor of IOPC, IOPC 2 and POLiTe 2 libraries - POLiTe repre-
sents a persistence layer for C++ applications. The library itself is written in C++.
Applications incorporate the library by including its header files and by linking its
object code. The library offers following features:

e Persistence of C++ objects derived from specific built-in base classes. Class
hierarchies are mapped vertically.

Persistence of all simple numeric types and C strings (char *).

Query language for querying persistent objects.

Associations between persistent objects. Ability to combine more associa-
tions to manipulate indirectly associated instances.

Simple database access.

e Common services like logging or locking.

3.1.1 Architecture

Even though the library can be divided to several functional units, it compiles as
one shared library. The architecture of the library is outlined in the Figure 3.1. The
main functional units are discussed in the following sections.

19

Application

Database Independent

8]

Common services (logging, exceptions)

Metamodel and O/R mapping

ClassRegister

1
1 T 1
1
Relations Obj ect References Query Language ey ==
Proto
Object

@ ImmutableObject

. DatabaseObject

Object Cache PersistentObject

Database Dependent (Database Layer)
Database Connection Cursor

1 1 T

OracleDatabase

OracleConnection OracleCursor

Figure 3.1: Architecture of the POLiTe library

3.1.2 The data access layer

The POLiTe library contains several classes that provide database access. At the
time, the library supported the Oracle 7 database and the code used OCI' 7 interface
to access it. The classes are accessed via common interface that can be used for
implementing other RDBMs to the library.

The interface is a set of abstract classes - Database, Connection and C—
ursor. Communication with the database flows excusively through this interface
and its implementation (OracleDatabase, OracleConnection and Ora-
cleCursor). The interface Database is a logical representation of a database
(e.g. an Oracle instance), Dat abase can create one or more connections (Conn-—
ection) to the database. The Connection inteface is the main communication
channel with the database. Using the implementations of the Connection inter-
face it is posible to send SQL statements to database and receive responses in the
form of cursors (Cursor). The response is a set of one or more rows that can be

'0racle Call Interface

20

obtained from the Cursor.

3.1.3 Metamodel and object-relational mapping.

Every persistent class maintainable by the POLiTe library has to be described by
a set of preprocessor macro calls. These calls are included directly into the class
definitions or near them. Description of the class attributes and the necessary map-
ping information has to be provided together with declaration of every persistent
class. Metainformation covers class name, associated database table, parents, ev-
ery persistent attribute with its type, table columns and more. For complete list see
[5]. Example 3.1.1 displays definition of our classes Person and Student in
the POLiTe library.

21

Example 3.1.1 Definition of a class in the POLiTe library

// Person class
class Person : public PersistentObject
{
// Declare the class, its direct predecessor (s)
CLASS (Person) ;
PARENTS ("PersistentObject");
// ... and its associated table
FROM ("PERSON") ;
// Define member attributes
dbString (name) ;
dbShort (age) ;
// Primary key OID is inherited from PersistentObject
// Map other attributes
MAP_BEGIN
mapString (name, "#THIS.NAME", 50) ;
mapShort (age, "#THIS.AGE") ;
MAP_END;
public:
}i
// Define method returning pointer to the prototype
CLASS_PROTOTYPE (Person) ;
// Define the solitaire prototype instance Person_class
PROTOTYPE (Person) ;

// Student class
class Student : public Person
{
CLASS (Student) ;
PARENTS ("Person") ;
FROM ("STUDENT") ;
dbString (studcardid) ;
MAP_BEGIN
mapString (studcardid, "#THIS.STUDCARDID", 20) ;
MAP_END;
}i
CLASS_PROTOTYPE (Student) ;
PROTOTYPE (Student); // Student_class

// Employee class
class Employee : public Person
{
CLASS (Employee) ;
PARENTS ("Person") ;
FROM ("EMPLOYEE") ;
dbInt (salary);
MAP_BEGIN
mapInt (salary, "#THIS.SALARY) ;
MAP_END;
}i
CLASS_PROTOTYPE (Employee) ; 22
PROTOTYPE (Employee); // Employee_class

Because the library needs to track the dirty status of persistent objects, you
have to maintain this flag by own or better restrict manipulation with persistent
attributes to the use of getter and setter methods defined by the macros. For every
class T described by these macros there is an associated template class prototype
Proto<T>. The solitaire instance of this prototype class holds infromation about
the metamodel described by the macros and provides the actual database mapping.
Prototypes are registered by the ClassRegister.

Persistent classes inherit their behaviour from one of four base classes defined
in the library - the Object, ImmutableObject, DatabaseObject or Per—
sistentObject class. Depending on what the library parent is, several features
of the persistence are supported:

e Object - instances of descendants of this class can be obtained by database
queries. These objects don’t have any database identity and can represent
results from complex queries containing aggregate functions. More obtained
instances can be the same.

e ImmutableObject - instances of this class have a database identity mapped
to one or more column(s) in the associated table (or view) and represent con-
crete rows in database tables or views. They can be loaded repetitively, but
the ImmutableObject class doesn’t propagate changes made to them back to
the database. To use this class as a query result, the query has to return rows
that match rows in corresponding database tables or views.

e The DatabaseObject class is much the same as the ImmutableObj—
ect, but changes are propagated back to the database.

e The PersistentObject class offers the most advanced persistence op-
tions from all the classes mentioned above. The PersistentObject
defines and maintains a unique attribute OID that holds the identity of ev-
ery PersistentObject’s instance within the database. Unlike previous
classes, persistence of whole type hierarchies is allowed.

As mentioned, the library offers vertical mapping for descendants of the Pe—
rsistentObject. Tables related to mapped inheritance hierarchies are joined
using the surrogate OID key. Object model can be created upon an existing and
even read-only database with arbitrary keys. In this case, descendants of the D—
atabaseObject or ImmutableObject respectively should be used and no
inheritance between them is allowed.

Associations in the POLiTe library are not modeled as references but as in-
stances of the Relation class. There are five subclasses of this class - OneT—
oOneRelation, OneToManyRelation, ManyToOneRelation, ManyT—
oManyRelation and ChainedRelation. Their names describe which kind
of relation between the underlying tables they manage. ChainedRelation is

23

built from other relations and it can be used to define relation for indirectly associ-
ated objects. Example 3.1.2 demonstrates how a one-to-many relation between the
Employee and Student classes can be created and used.

Example 3.1.2 Associations in the POLiTe library

OneToManyRelation<Employee, Student> <«
Employee_Student_Supervisor (
"EMPLOYEE_STUDENT_SUPERVISOR", dbConnection
)i

// Let’s suggest that the Employee variable represents
// a reference to a "Ola Nordmann" persistent object
// and Student represents a reference to a "Richard Doe"
// persistent object.
// Create a supervisor relation between "Ola Nordmann"
// and "Richard Doe".
Employee_Student_Supervisor.InsertCouple (

x*Supervisor, =*xStudent

)i

The relation can be queried for objects on both of its sides. So we may run
queries like "Which students are supervised by Ola Nordmann?", "Who is the su-
pervisor of Richard Doe?" or even more complex ones, but that would be out of
the scope of this thesis.

The one-to-many relation can be replaced by a reference to the supervisor in
the Student class definition:

dbPtr (supervisor) ;

dbString (studcardid) ;

MAP_BEGIN

mapPtr (supervisor, "SUPERVISOR") ;

Usage of the references is closer to the object-oriented approach in which we
navigate using such pointers or references to gain access to the related objects. The
drawback is, that the navigation is usually one-way and in this case, the retrieval of
all supervised students of an employee is not trivial.

3.1.4 Persistent object manipulation

Persistent objects can enter one of the following states (see the state diagram in
Figure 3.2):

e Transient - Each new instance of persistent class enters this state. The in-
stance data are stored only in the application memory and are not persisted.

24

New

Transient

BePersistent

Delete

MemoryLock

Delete Local Copy

@/ Locked Local Copy
\ MemoryUnlock

Delet
ese Free Reference -> MemoryLock

Figure 3.2: POLiTe persistent object states

e Local copy - A persistent image of the transient instance can be created by

calling the BePersistent method. The method inserts attribute values of
the instance to the database. The memory instance can be deallocated at any
time as it is considered as a cached copy of the inserted database data. This
state can be entered also at a later time when loading a persistent instance
which has no local copy in the application memory.

e Locked local copy - To prevent the local copy deallocation, the local copy

can be locked in the application memory. Local copy is not deallocated until
its lock is released. After unlocking, the locked local copy enter the local
copy state.

Persistent instance - A persistent object can enter this state if its local copy
is removed from the application memory. During the state transition, the
changes in the local copy are usually propagated to the database. The object
exists now only in the database; it can be loaded later and enter one of the
local copy states.

Because persistent object can exist in one of those states, library uses indirect

references to acces the object’s attributes. Users don’t have to look after the object’s
current state and can just access it via the Re £<T> reference type. The reference
handles required state transitions by itself.

All local copies and local locked copies are managed by the ObjectBuffer

which acts as a trivial object cache. The buffer is implemented as an associative

25

container between object identities and local object copies. If the buffer is full, all
non-locked local copies are freed and dirty instances updated in the database.

POLITe allows you to specify several concurrent data access strategies the O—
bjectBuffer will use. These strategies are used to influence the safety or speed
of concurrent acces and cached data coherence.

e Updating strategy - determines whether changes done to local copies are
propagated to the database immediately or they can be deferred.

e Locking strategy - determines how the rows in the database are locked when
they are loaded into local copies. Shared, exclusive or no locking can be
requested.

o Waiting strategy - if the application tries to access a locked database resource
(by another session), this strategy specifies whether the application waits
until the resource gets unlocked or an exception is thrown.

e Reading strategy - determines behaviour of the persistence layer if a local
copy is accessed using the indirect reference. The local copy can be either
used right away or it can be refreshed with the data stored in the database.
The refresh option can be speeded up by comparing timestamps of the local
copy and of the stored image.

Object manipulation is illustrated by the Example 3.1.3. Two objects - an em-
ployee and a student, which is supervised by that employee, are created as transient
instances and inserted into the database. The BePersistent () call returns a
reference to the unlocked local copies of the created objects. Then the salary of the
employee is modified and the change propagated to the database. In the end, the
student object is deleted from the database and also from the memory.

26

Example 3.1.3 Persistent object manipulation

// Create a new employee

Employeex e = new Employee();

e—>name ("Ola Nordmann") ;

e->age (45) ;

e->salary (60000) ;

Ref<Employee> employee = e->BePersistent (dbConnection);

// Create a new student supervised by the employee <«
created

Studentx s = new Student () ;

s—>name ("Richard Doe");

s—>age (22) ;

s—>studcardid ("WCD-3223") ;

s—>supervisor (empl) ;

Ref<Student> student = s->BePersistent (dbConnection);

// Update the employee’s salary

e->salary (65000) ;

e->Update (); // Propagates the change to the database

// The change could be propagated immediately if the

// updating strategy was set to the "immediate" setting.

// Delete the new student
s—>Delete() ;
) ;

3.1.5 Querying

Queries in the POLiTe library search for objects of a specified class. Search criteria
restricting the result set can be specified. Queries are represented as instances of
the Query class which contains only two data fields: The search criteria, in fact
the WHERE part of the final SELECT statement, and a ORDER BY specification
which determines how the result will ordered. The search criteria can be written
using SQL (referencing physical table and column names) or using a C++-like
syntax. The C++-like syntax hides the O/R mapping complexity and allows the
users to use more convenient class and attribute names. The query objects can
be then combined using the C++ !, && and Il logical operators. Example 3.1.4
illustrates how the queries are created, combined and executed.

27

Example 3.1.4 Queries in the POLiTe library

// All employees with salary > 40000
Query gl ("Employee::salary > 40000")

// All employees with the first name Ola
Query g2 ("Person::name LIKE ’'Ola %');

// All employees with salary > 40000 having the first «
name Ola
Query g3 = gl && g2;

// Order the result by the salary descending.
g3.0rderBy ("Employee: :salary DESC");

// Execute g3 and iterate through the result
QueryResult* result = Employee_class (g3, dbConnection);
while (++ (*qr) !=DBNULL) {

// process object accessible using (*QR)->
i
gr—>Close () ;

3.1.6 Conclusion

The library provides solid and rich-featured ORM solution. However, there are
several areas in which the library can be improved:

e Transparency - persistent classes have to be precisely described by macros.
Typos in this description may lead to unclear compiletime or runtime errors.
Attributes must be accessed via the getter and setter methods.

e Library design - library is one monolithic block and compiles into one shared
library. There is no other way to add additional database drivers or features
than changing the makefile and recompiling the library. Same applies to
the library configuration - many parameters are configured as preprocessor
macros. Changing them implies library recompilation.

e Database dependency - without modifications, the library supports only the
Oracle platform. Adding new database support supposes to derive new de-
scendants of Databas, Connection and Cursor classes, implement
their code and recompile the library. The library also contains several SQL
fragments that aren’t separated into the database driver layer.

These disadvantages are addressed mostly by the IOPC library [3] and its de-
scendant described further in this thesis. But first, we will look at the performance
enhancement provided by the succeeding library POLiTe 2.

28

3.2 POLiTe 2

The new version of the POLiTe library focuses on the library’s performance and
on the design of new rich-featured cache layer. The new layer replaces the Ob j—
ectBuffer interface and enhances the concept of indirect memory pointers by
adding one more indirection level.

3.2.1 The cache layer

The cache layer consists mainly of implementaitions of the Cache and the Ext -
endedCache interfaces.

e The Cache interface defines methods for manipulation with persistent ob-
jects and methods to synchronize the cache state with the database.

e The ExtendedCache interface extends the Cache interface by additional
methods that allow asynchronous maintenance of the cache.

Caches can be grouped together using the ComposedCache class (which also
implements the Cache interface). Strategies can be specified for selecting which
cache for given object should be used. The updating, locking, waiting and reading
strategies can also be specified.

Caches that implement the extended interface can be maintained by the cache
manager called CacheKeeper. CacheKeeper runs an second thread that scans
managed caches and removes instances considered as worst’. If dirty, these in-
stances are written back to the database. CacheKeeper acts also as a facade for
composing caches and specifying strategies.

The library contains implementations of several caches which can be used in
user applications:

e The VoidCache - implements the basic interface Cache. This implemen-
tation actually doesn’t cache anything, but just holds locked local copies. As
the copies are unlocked, changes are propagated immediately to the database
and objects are removed from the cache.

e The LRUCache (multithreaded) and the LRUCacheST (singlethreaded) im-
plement the ExtendedCache interface. These classes use the LRU re-
placement strategy ([6]). The multithreaded variant can even be used with
the CacheKeeper’s asynchronous maintenance feature.

e For the ARCCache (multithreaded) and the ARCCacheST (singlethreaded)
the things are the same with one exception, that they use the ARC replace-
ment strategy ([7]).

29

3.2.2 Using the persistent objects

In the previous version of the library, transient objects that did not have database
representation could be accessed directly via pointers. Indirect references were
used after making these objects persistent (the Re £<T> template). In the POLiTe
2 library, the creation, descruction of all the objects is managed by the library code
and users can acces its members by dereferencing indirect pointers.

The indirect pointer template Re £ <T> was replaced by the template DbPt r—
<T> (database pointer). The DbPt r<T> can point to instances in several states:

e Transient instances which are present only in memory (and do not have a
persistent representation yet), the owner of these instances is the pointer.

¢ In-memory instances owned by a cache (which may already have a database
representation, but this is not neccessary).

e Persistent representation of the object. The pointer holds only the indentity
of the object.

The DbPt r<T> type overloades —> and » operators (as the Re£<T> did) and
thus can be used similarly as standard pointer to the object.

By dereferencing the database pointer using the x operator user receives an
instance of a cache pointer (CachePtr<T>). The cache pointer can point to ei-
ther transient or persistent instances. However the existence of the cache pointer
guarantees that the object is loaded into the computer’s memory and the pointer
contains direct reference to the instance itself. Constructor of the cache pointer
asks cache to load relevant object from the database (if not already present in the
cache) and obtains a lock of the object from the cache. Locked objects cannot be
removed from the cache unless they are unlocked. This task is done by the cache
pointer’s destructor.

Using the » operator on the database pointer representing a persistent object
user receives a reference to loaded and locked instance in a cache. This reference
takes a form of a cache pointer. The cache pointer can be again dereferenced
resulting in retrieval of direct pointer to the in-memory instance. This process can
be simplified just by using the —> operator on the database pointer. An implicit
instance of the cache pointer is created and the —> operator repeatedly called on it
(this is a feature of the C++ language). Then the desired member of the instance is
accessed. After that, the cache pointer is destroyed and cache lock released. (This
may result in significant performance degradation if using the VoidCache, because
only locked copies are contained by the cache. Calling the —> operator causes a
persistent object to be loaded from database into the memory, then desired member
is accessed and object - if modified - is written back and removed from cache).

30

3.2.3 Conclusion

New version of the POLiTe library allows users to utilize advanced persistent ob-
ject caching features. Unmentioned remained the support for multithreaded envi-
ronment which includes encapsulation of several synchronization primitives.

Disadvantages listed in the Section 3.1.6 also apply to this version of the library
as they were not the point addressed by the thesis [1].

3.3 The IOPC library

The IOPC library [3] contains a new api for object-relational mapping of persistent
objects. This new iterface coexists with the old POLiTe-style interface inside one
library and doesn’t interfere much with it. The interface is (with few exceptions)
clearly divided into two parts - the IOPC and the POLiTe part. Classes written for
the first version of the POLiTe library should be usable with this library with minor
modifications.

3.3.1 Features of the library

The IOPC library offers all features of the original POLiTe library. New features
and main differences are listed below.

e No need to describe structure of persistent classes. Persistence works almost
transparently.

o All three basic types of class hierarchy mapping are supported - horizontal,
vertical and filtered. Combinations of these types in one class hierarchy are
also allowed (with a few exceptions).

e [OPC supports persistence of all simple numeric types and C strings (cha-
r*, associations and collections of associations. The library allows even to
create a new persistent data type.

e [oading persistent object attributes by groups. Persistent attributes can be
divided into several groups which can be loaded separately.

e Easy implementation of new RDBMS into the library”.

3.3.2 Architecture of the library

One of the most interesting aspects of the IOPC library is a new approach how to
retreive the persistent class metamodel. User specification of the class structure
is not needed (if not still using the POLiTe classes). This task is performed by

2However, recompilation of several IOPC modules is still needed

31

a source-to-source translator OpenC++> and its IOPC wrapper IOPC SP (see the
library architecture displayed in Figure 3.3).

Modifikované
zdrojové texty
aplika¢nich trid

Zdrojové texty

Kompilator
aplika¢nich tFid

Vysledna
Linker

IOPC SP b
aplikace

SQL skript pro

Metadata I0PC DBSC B (o

schématu

Vysledna
aplikace

IOPC LIB Rela¢ni

databaze

Figure 3.3: Architecture of the IOPC library TODO: predelat obr., pripsat
OpenC++...

The IOPC library consists of three main parts:

e JOPC SP uses the OpenC++ parser to modify the source code to support
the object persistence and generates XML metadata describing structure of
persistent classes.

e J/OPC DBSC generates SQL scripts to prepare database for storing persistent
objects.

e JOPC LIB is library that does the main task - object persistence. The library
is linked to the final program, uses metamodel generated by the IOPC SP
and database structures created by the scripts from IOPC DBSC.

Loading and storing XML metadata is done by two statically-linked libraries
- XMLMetadataLoader and XMLMetadataWriter. They implement inter-
faces MetadatalLoader and MetadataWriter respectively. XMLMetada—
taLoader and XMLMetadataWriter use the Xerces* parser. In order to use

3http://opencxx.sourceforge.net/
“4http://xml.apache.org/xerces-c/

32

http://opencxx.sourceforge.net/
http://xml.apache.org/xerces-c/

other type of metamodel storage, new implementation of the interfaces has to be
created and the MetadatalL.oader/MetadataWriter libraries recompiled.

IOPC SP is a standalone executable created by linking together modified (patched)
OpenC++ source and a new metaclass. The metaclass modifies the source-to-
source translation of persistent classes and its references. Tasks performed by this
tool are:

o Generates the set and get methods for all persistent attributes. Setters modify
the dirty status of the object and getters ensure that corresponding attribute
groups are loaded.

e Modifies every reference to persistent attribute to use generated get and set
methods.

e Generates remaining members needed for the IOPC LIB to be able to persist
the processed class.

o Inspects the processed persistent class and writes information about its struc-
ture to XML by calling MetadataWriter (its implementation XMLMet —
adataWriter)

e Runs compiler and linker on the translated source code.

IOPC DBSC is a standalone executable that generates SQL scripts for various
purposes - script to setup the database, script to drop the created database structures
or explain plan script. It uses the MetadataLoader to load the persistent class
metamodel written by the IOPC SP.

IOPC LIB is a shared library that represents the core of the IOPC project. It is
linked to the outputs (object files) of the IOPC SP and other modules and provides
the run-time functionality.

The Figure 3.4 shows how the new functionality is integrated to the original
POLiTe library.

Database layer was prepared using OCI 8 for the Oracle 8i database, slightly
modified original interface was used (the Database, Connection and Cu-
rsor classes). The DatabaseSglStatements interface is a new element
added to the database layer. Its implementation should generate all SQL statements
needed by the library. Again, the Oracle 8i functionality is already present in the
library. As we see, the interface and functionality of the database layer remained
similar to the POLiTe original.

IOPC persistent classes are now derived from a new base class - the Top-
cPersistentObject. The original base class Object and its descendants
(ImmutableObject, DatabaseObject and PersistentObject) were
preserved. Notice, that the TopcPersistentObject’s base class is the origi-
nal Object class.

33

Databéazoveé zavislé tiidy

| DatabaseSqlStatements |<——| OracIeSiSqISlatemenls|

Oracle8iDatabase
Oracle8iConnection|

Database
Upravené tidy
puvodni knihovny Connection
POLiTe
Cursor

Oracle8iCursor
’-Iﬂ Object éﬁ:l ProtoBase
r 23

_JJ
| I F
lopcClassObjectContainer opeClassFactory
m lopcPersistentObject I: lopcClassObjectimpl
Metadata

£

lopcProtoBaseAdaptor

[ﬂ Uzivatelské tridy

Figure 3.4: Structure of the IOPC LIB

Functionality of prototypes> for the IOPC persistent classes is provided by the
TopcClassObjectImpl class. One instance of this class is created for every
persistent type declared in the user code, while the instances of Prot o<T> proto-
types are created for the POLiTe persistent classes. For implementational resons,
the IOPC library generates POLiTe-style prototypes for all ITopcClassObjec—
tImpl instances. Their type is ITopcProtoBaseAdaptor. IopcProtoBa-—
seAdaptor overrides most of the Prot oBase’s methods and delegates its work
to the TopcClassObjectImpl class.

3.3.3 Conclusion

The main goal of the IOPC library was to make the usage of the POLiTe library
simpler, more transparent, and to add new features. The architecture of the library
was completely redesigned for the sake of these changes. At first glance the IOPC
library looks like a big improvement over the original library. But if we look fur-
ther into the source code and used technologies, we come upon several critical
issues that may cause the usage and deployment of this library almost impossible.
TODO: uvest nasl. odstavec

IOPC uses the OpenC++ as a way to retreive information about the structure
of persistent classes. OpenC++ as a project seems to be almost dead, last commit

SPrototypes were explained in [?]

34

to the project’s CVS occured in 2005. OpenC++ can’t handle most of template
constructs, processing files that include GCC’s STL headers (tested on versions
3.4 and newer) produces a lot of errors. Because the source-to-source translation
is used, users can’t be sure if any of their code that was translated with errors
(although the IOPC SP states that the errors can be ignored) will do what was
intended. TODO: Zjistit jak to je s STL - jde to vubec zkompilovat? Probably for
this reason the IOPC allows only C strings (char+ and w_char«), not the C++
STL strings (std: :stringand std: :wstring).

Next, IOPC uses its own modified version of OpenC++ (called 2.6.t.0) and
integrates it into the IOPC SP utility. This approach renders difficult further main-
tenance of the OpenC++ code used in the utility. New changes from the OpenC++
CVS have to be merged manually into the IOPC SP source.

Second point is a question, why there are two parallel interfaces in the IOPC li-
brary - one for the new persistent objects and one for the POLiTe-styled objects. If
there is no known implementation that uses the POLiTe library, there is no need to
be backward-compatible. The POLiTe part of the source code will just remain un-
maintained (as no one is supposed to use the POLiTe objects in new applications).
Because several IOPC objects inherit from the POLiTe classes, many inherited
methods doesn’t make sence any more. This makes the API less readable and can
lead to user’s confusion. An example of this situation is the TopcProtoBaseA—
daptor which contains a number of methods commented as "Fake function". The
presence of two APIs makes usage of the library less clear and less maintainable.

The library itself remained as one monolithic block with no signs of library
configurability. Many parameters are defined as preprocessor macros, enabling
other options (like adding a new database driver) leads to changes in the source
code of the library and recompilation. The design of the library even makes impos-
sible to use more than one database driver.

Bad design of the program interface. Much useful information is hidden in
internal structures of the library, these structures are not visible via the library’s api.
This concerns mostly the data retreived from the Met adataLoader - the library
could implement some kind of reflection api to be able to query the metamodel.

Wrong and dangerous constructions in the code may cause crashes in the run-
time. Two examples:

e Dependencies between statically initialized objects - static instances of the
TIopcClassRegistrar use the statically initialized instance of class I—
opcClassFactory. This may work and may not, it depends on the ini-
tialization order of compilation units.

e Inability to use the library in multithreaded environment. Some data struc-
tures are reused between persistence layer calls, this prevents to make the
library multithreading-friendly without major modifications.

Despite good idea behind the IOPC library, the implementation is deeply flawed,
unusable and unmaintainable. For these reasons, the author of this thesis decided

35

not to continue development upon the source code of this library.

36

Chapter 4

Literature used

(1]
(2]

(3]
(4]

(5]
[6]
(7]

(8]

[9]

[10]

Jan Hadrava, Sprdva persistentnich objektii, Master Thesis, 2004.

Wikipedia, Object database, URL: http://en.wikipedia.org/wiki/-
ODBMS.

Josef Troch, Persistence objektii v C++, Master Thesis, 2004.

Michal Kopecky, Object persistency in C++, Doctoral Thesis,
2004.

Michal Kopecky, POLiTe User’s Reference, 2002.
A. Silberschatz et al, Applied Operating System Concepts, 2000.

N. Megiddo and S. M. Dharmendra, ARC: A Self-Tunning, Low
Overhead Replacement Cache, March 31, 2003.

Frank Manola and Jeff Sutherland, SQL3 Object Model,
URL: http://www.objs.com/x3h7/sql3.htm.

Michael Stonebraker and Dorothy Moore, Object-Relational
Dbmss: the Next Great Wave, 1996.

Oracle, Oracle Database Online Documentation 10g Release 2,
URL: http://www.oracle.com/pls/db102/homepage.

37

http://en.wikipedia.org/wiki/ODBMS
http://en.wikipedia.org/wiki/ODBMS
http://www.objs.com/x3h7/sql3.htm
http://www.oracle.com/pls/db102/homepage

	Introduction
	Persistence layer requirements
	The identity of persistent objects
	Database mapping requirements
	Object-relational databases
	Database mapping requirements continued
	Querying
	Caching
	Reflection
	Library architecture
	Conclusion

	Evolution of the IOPC 2 library
	POLiTe
	Architecture
	The data access layer
	Metamodel and object-relational mapping.
	Persistent object manipulation
	Querying
	Conclusion

	POLiTe 2
	The cache layer
	Using the persistent objects
	Conclusion

	The IOPC library
	Features of the library
	Architecture of the library
	Conclusion

	Literature used

